[1] A. Tsiatmas, C. P. M. J. Baggen, F. M. J. Willems, J. M. G. Linnartz, J. W. M. Bergmans. An illumination perspective on visible light communications. IEEE Commun. Mag., 52, 64-71(2014).
[2] Z. Zeng, S. Fu, H. Zhang, Y. Dong, J. Cheng. A survey of underwater optical wireless communications. IEEE Commun. Surveys Tuts., 19, 204-238(2017).
[3] C. Tsai, C. Cheng, H. Kuo, G. Lin. Toward high-speed visible laser lighting based optical wireless communications. Prog. Quantum Electron., 67, 100225(2019).
[4] W. Hu, H. Cong, W. Huang, Y. Huang, L. Chen, A. Pan, C. Xue. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci. Appl., 8, 106(2019).
[5] K. Ho, R. Chen, G. Liu, C. Shen, J. Holguin-Lerma, A. A. Al-Saggaf, T. K. Ng, M. Alouini, J. He, B. S. Ooi. 3.2 gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector. Opt. Express, 26, 3037-3045(2018).
[6] D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, B. Corbett. GHz bandwidth semipolar (112-2) InGaN/GaN light-emitting diodes. Opt. Lett., 41, 5752-5755(2016).
[7] K. Rajabi, J. Wang, J. Jin, Y. Xing, L. Wang, Y. Han, C. Sun, Z. Hao, Y. Luo, K. Qian, C. Chen, M. Wu. Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design. Opt. Express, 26, 24985-24991(2018).
[8] H. Han, H. Lin, C. Lin, W. Chong, J. Li, K. Chen, P. Yu, T. Chen, H. Chen, K. Lau, H. Kuo. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express, 23, 32504-32515(2015).
[9] T. Wu, C. Sher, Y. Lin, C. Lee, S. Liang, Y. Lu, S. H. Chen, W. Guo, H. Kuo, Z. Chen. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci., 8, 1557(2018).
[10] D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, D. O’Brien. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photonics Technol. Lett., 26, 637-640(2014).
[11] J. J. D. McKendry, D. Tsonev, R. Ferreira, S. Videv, A. D. Griffiths, S. Watson, E. Gu, A. E. Kelly, H. Haas, M. D. Dawson. Gb/s single-LED OFDM-based VLC using violet and UV gallium nitride μLEDs. IEEE Summer Topicals Meeting Series (SUM), 175-176(2015).
[12] R. X. G. Ferreira, E. Xie, J. J. D. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, R. V. Penty, I. H. White, D. C. O. Brien, M. D. Dawson. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications. IEEE Photonics Technol. Lett., 28, 2023-2026(2016).
[13] M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, M. D. Dawson. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photon. Res., 5, A35-A43(2017).
[14] C. Chen, J. Yan, D. Chen, K. Lin, K. Feng, M. Wu. A 520-nm green GaN LED with high bandwidth and low current density for gigabits OFDM data communication. Optical Fiber Communication Conference (OFC), Th2A.18(2018).
[15] X. He, E. Xie, M. S. Islim, A. A. Purwita, J. J. D. McKendry, E. Gu, H. Haas, M. D. Dawson. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm. Photon. Res., 7, B41-B47(2019).
[16] S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, P. Tian. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl. Mater. Interface, 10, 5641-5648(2018).
[17] E. Xie, X. He, M. S. Islim, A. A. Purwita, J. J. D. McKendry, E. Gu, H. Haas, M. D. Dawson. High-speed visible light communication based on a III-nitride series-biased micro-LED array. J. Lightwave Technol., 37, 1180-1186(2019).
[18] S. Tsai, C. Lu, C. Liu. Piezoelectric effect on compensation of the quantum-confined Stark effect in InGaN/GaN multiple quantum wells based green light-emitting diodes. Nano Energy, 28, 373-379(2016).
[19] J. Shi, K. Chi, J. Wun, J. E. Bowers, Y. Shih, J. Sheu. III-nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication. IEEE Electron Device Lett., 37, 894-897(2016).
[20] H. Lan, I. Tseng, H. Kao, Y. Lin, G. Lin, C. Wu. 752-MHz modulation bandwidth of high-speed blue micro light-emitting diodes. IEEE J. Quantum Electron., 54, 3300106(2018).
[21] A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, D. Feezell. Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth. IEEE Electron Device Lett., 39, 520-523(2018).
[22] M. Monavarian, A. Rashidi, A. A. Aragon, M. Nami, S. H. Oh, S. P. DenBaars, D. Feezell. Trade-off between bandwidth and efficiency in semipolar (2021) InGaN/GaN single-and multiple-quantum-well light-emitting diodes. Appl. Phys. Lett., 112, 191102(2018).
[23] M. Monavarian, A. Rashidi, A. A. Aragon, S. H. Oh, A. K. Rishinaramangalam, S. P. DenBaars, D. Feezell. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes. Appl. Phys. Lett., 112, 041104(2018).
[24] M. Haemmer, B. Roycroft, M. Akhter, D. V. Dinh, Z. Quan, J. Zhao, P. J. Parbrook, B. Corbett. Size-dependent bandwidth of semipolar (1122) light-emitting-diodes. IEEE Photonics Technol. Lett., 30, 439-442(2018).
[25] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, J. Wang. Growth of nonpolar a-plane GaN on nano-patterned r-plane sapphire substrates. Appl. Surf. Sci., 255, 3664-3668(2009).
[26] L. Wang, L. Wang, J. Yu, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, H. Li. Abnormal Stranski–Krastanov mode growth of green InGaN quantum dots: morphology, optical properties, and applications in light-emitting devices. ACS Appl. Mater. Interface, 11, 1228-1238(2019).
[27] A. Hu, H. Tian, Q. Liu, L. Wang, L. Wang, X. He, Y. Luo, X. Guo. Graphene on self-assembled InGaN quantum dots enabling ultrahighly sensitive photodetectors. Adv. Opt. Mater., 7, 1801792(2019).
[28] M. Arita, F. Le Roux, M. J. Holmes, S. Kako, Y. Arakawa. Ultraclean single photon emission from a GaN quantum dot. Nano Lett., 17, 2902-2907(2017).
[29] Z. Gačević, M. Holmes, E. Chernysheva, M. Müller, A. Torres-Pardo, P. Veit, F. Bertram, J. Christen, J. M. González Calbet, Y. Arakawa, E. Calleja, S. Lazić. Emission of linearly polarized single photons from quantum dots contained in nonpolar, semipolar, and polar sections of pencil-like InGaN/GaN nanowires. ACS Photonics, 4, 657-664(2017).
[30] D. Wang, T. Zhu, R. A. Oliver, E. L. Hu. Ultra-low-threshold InGaN/GaN quantum dot micro-ring lasers. Opt. Lett., 43, 799-802(2018).
[31] G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, B. Zhang. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers. Opt. Express, 24, 15546-15553(2016).
[32] E. P. O. Reilly, S. Schulz. Theory of reduced built-in polarization field in nitride-based quantum dots. Phys. Rev. B, 82, 033411(2010).
[33] M. Zhang, P. Bhattacharya, W. Guo. InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl. Phys. Lett., 97, 011103(2010).
[34] L. Wang, D. Yang, Z. Hao, Y. Luo. Metal–organic–vapor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes. Chin. Phys. B, 24, 067303(2015).
[35] X. Liu, P. Tian, Z. Wei, S. Yi, Y. Huang, X. Zhou, Z.-J. Qiu, L. Hu, Z. Fang, C. Cong, L. Zheng, R. Liu. Gbps long-distance real-time visible light communications using a high-bandwidth GaN-based micro-LED. IEEE Photonics J., 9, 7204909(2017).
[36] X. Liu, R. Lin, Z. Qian, H. Chen, X. Zhou, G. Zhou, X. Cui, X. Zhou, L. Zheng, R. Liu, P. Tian. An InGaN micro-LED based photodetector array for high-speed parallel visible light communication. Asia Communications and Photonics Conference (ACP), 1-3(2018).
[37] J. F. C. Carreira, E. Xie, R. Bian, C. Chen, J. J. D. McKendry, B. Guilhabert, H. Haas, E. Gu, M. D. Dawson. On-chip GaN-based dual-color micro-LED arrays and their application in visible light communication. Opt. Express, 27, A1517-A1528(2019).