Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316021(2023)

Research Progress of Perovskite Materials in Hot Carrier Solar Cells

Shuhan Chen, Xiaochun Liu*, Lina Wang, and Jue Gong**
Author Affiliations
  • School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
  • show less
    References(82)

    [1] Prince M B. Silicon solar energy converters[J]. Journal of Applied Physics, 26, 534-540(1955).

    [2] Lal N N, Dkhissi Y, Li W et al. Perovskite tandem solar cells[J]. Advanced Energy Materials, 7, 1602761(2017).

    [3] Yao N N, Huang J Z, Fu K et al. Enhanced light harvesting of dye-sensitized solar cells with up/down conversion materials[J]. Electrochimica Acta, 154, 273-277(2015).

    [4] Nozik A J, Beard M C, Luther J M et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J]. Chemical Reviews, 110, 6873-6890(2010).

    [5] König D, Casalenuovo K, Takeda Y et al. Hot carrier solar cells: principles, materials and design[J]. Physica E: Low-Dimensional Systems and Nanostructures, 42, 2862-2866(2010).

    [6] Nozik A J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots[J]. Annual Review of Physical Chemistry, 52, 193-231(2001).

    [7] Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters[J]. Journal of Applied Physics, 53, 3813-3818(1982).

    [8] Heo J H, Song D H, Han H J et al. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate[J]. Advanced Materials, 27, 3424-3430(2015).

    [9] Liu M Z, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 501, 395-398(2013).

    [10] Lin K B, Xing J, Quan L N et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent[J]. Nature, 562, 245-248(2018).

    [11] Xiao Z G, Kerner R A, Zhao L F et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites[J]. Nature Photonics, 11, 108-115(2017).

    [12] Yin L Q, Zhang D D, Wang S et al. Research on current stability of white LED devices based on CsPbBr3 perovskite quantum dots[J]. Acta Optica Sinica, 41, 1923002(2021).

    [13] Lee Y, Kwon J, Hwang E et al. High-performance perovskite-graphene hybrid photodetector[J]. Advanced Materials, 27, 41-46(2015).

    [14] Hu X, Zhang X D, Liang L et al. High-performance flexible broadband photodetector based on organolead halide perovskite[J]. Advanced Functional Materials, 24, 7373-7380(2014).

    [15] He J T, Lü Q N, Zhang M D et al. Narrow-band perovskite photodetector based on SPR and interference mode composite enhancement[J]. Chinese Journal of Lasers, 49, 2304004(2022).

    [16] Kojima A, Teshima K, Shirai Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [17] Park J, Kim J, Yun H S et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides[J]. Nature, 1-7(2023).

    [18] Tedeschi D, De Luca M, Fonseka H A et al. Long-lived hot carriers in III-V nanowires[J]. Nano Letters, 16, 3085-3093(2016).

    [19] Ryan J F, Taylor R A, Turberfield A J et al. Time-resolved photoluminescence of two-dimensional hot carriers in GaAs-AlGaAs heterostructures[J]. Physical Review Letters, 53, 1841-1844(1984).

    [20] Nie Z H, Gao X Z, Ren Y J et al. Harnessing hot phonon bottleneck in metal halide perovskite nanocrystals via interfacial electron-phonon coupling[J]. Nano Letters, 20, 4610-4617(2020).

    [21] Righetto M, Lim S S, Giovanni D et al. Hot carriers perspective on the nature of traps in perovskites[J]. Nature Communications, 11, 2712(2020).

    [22] Price M B, Butkus J, Jellicoe T C et al. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites[J]. Nature Communications, 6, 1-8(2015).

    [23] Ni L M, Huynh U, Cheminal A et al. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells[J]. ACS Nano, 11, 10834-10843(2017).

    [24] Maeng I, Lee S, Tanaka H et al. Unique phonon modes of a CH3NH3PbBr3 hybrid perovskite film without the influence of defect structures: an attempt toward a novel THz-based application[J]. NPG Asia Materials, 12, 1-7(2020).

    [25] Guo Z, Wan Y, Yang M J et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy[J]. Science, 356, 59-62(2017).

    [26] Zhang H, Debroye E, Zheng W H et al. Highly mobile hot holes in Cs2AgBiBr6 double perovskite[J]. Science Advances, 7, eabj9066(2021).

    [27] Shrestha S, Li X X, Tsai H et al. Long carrier diffusion length in two-dimensional lead halide perovskite single crystals[J]. Chem, 8, 1107-1120(2022).

    [28] Fu J H, Xu Q, Han G F et al. Hot carrier cooling mechanisms in halide perovskites[J]. Nature Communications, 8, 1-9(2017).

    [29] Yang Y, Ostrowski D P, France R M et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites[J]. Nature Photonics, 10, 53-59(2016).

    [30] Yang J F, Wen X M, Xia H Z et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites[J]. Nature Communications, 8, 1-9(2017).

    [31] Li M J, Bhaumik S, Goh T W et al. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals[J]. Nature Communications, 8, 1-10(2017).

    [32] Fang H H, Adjokatse S, Shao S Y et al. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites[J]. Nature Communications, 9, 1-8(2018).

    [33] Zhu H M, Miyata K, Fu Y P et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites[J]. Science, 353, 1409-1413(2016).

    [34] Nelson C A, Monahan N R, Zhu X Y. Exceeding the Shockley-Queisser limit in solar energy conversion[J]. Energy & Environmental Science, 6, 3508-3519(2013).

    [35] Wang S H, Sakurai T, Wen W J et al. Energy level alignment at interfaces in metal halide perovskite solar cells[J]. Advanced Materials Interfaces, 5, 1800260(2018).

    [36] Kahmann S, Loi M A. Hot carrier solar cells and the potential of perovskites for breaking the Shockley-Queisser limit[J]. Journal of Materials Chemistry C, 7, 2471-2486(2019).

    [37] Cong M Y, Yang B, Chen J S et al. Carrier multiplication and hot-carrier cooling dynamics in quantum-confined CsPbI3 perovskite nanocrystals[J]. The Journal of Physical Chemistry Letters, 11, 1921-1926(2020).

    [38] Shi H F, Zhang X L, Sun X W et al. Strong hot-phonon bottleneck effect in all-inorganic perovskite nanocrystals[J]. Applied Physics Letters, 116, 151902(2020).

    [39] Chauhan K K, Prodhan S, Bhattacharyya S et al. Hot phonon and auger heating mediated slow intraband carrier relaxation in mixed halide perovskite[J]. IEEE Journal of Quantum Electronics, 57, 4800108(2021).

    [40] Evans T J S, Miyata K, Joshi P P et al. Competition between hot-electron cooling and large polaron screening in CsPbBr3 perovskite single crystals[J]. The Journal of Physical Chemistry C, 122, 13724-13730(2018).

    [41] Wu T, Zhao R J, Qiu J M et al. Enhancing the hot carrier injection of perovskite solar cells by incorporating a molecular dipole interlayer[J]. Advanced Functional Materials, 32, 2204450(2022).

    [42] Tailor N K, Mishra S, Sharma T et al. Cation-dependent hot carrier cooling in the lead-free bismuth halide A3Bi2I9 (A = FA, MA, and Cs) perovskite[J]. The Journal of Physical Chemistry C, 125, 9891-9898(2021).

    [43] Chen J S, Messing M E, Zheng K B et al. Cation-dependent hot carrier cooling in halide perovskite nanocrystals[J]. Journal of the American Chemical Society, 141, 3532-3540(2019).

    [44] Dai L J, Deng Z Y, Auras F et al. Slow carrier relaxation in tin-based perovskite nanocrystals[J]. Nature Photonics, 15, 696-702(2021).

    [45] Hopper T R, Gorodetsky A, Jeong A et al. Hot carrier dynamics in perovskite nanocrystal solids: role of the cold carriers, nanoconfinement, and the surface[J]. Nano Letters, 20, 2271-2278(2020).

    [46] Chung H, Jung S I, Kim H J et al. Composition-dependent hot carrier relaxation dynamics in cesium lead halide (CsPbX3, X=Br and I) perovskite nanocrystals[J]. Angewandte Chemie International Edition, 56, 4160-4164(2017).

    [47] Hoye R L Z, Eyre L, Wei F X et al. Fundamental carrier lifetime exceeding 1 µs in Cs2AgBiBr6 double perovskite[J]. Advanced Materials Interfaces, 5, 1800464(2018).

    [48] Lee K J, Turedi B, Sinatra L et al. Perovskite-based artificial multiple quantum wells[J]. Nano Letters, 19, 3535-3542(2019).

    [49] Proppe A H, Quintero-Bermudez R, Tan H R et al. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics[J]. Journal of the American Chemical Society, 140, 2890-2896(2018).

    [50] Wang G, Liu T H, Wang B Z et al. Hot-carrier tunable abnormal nonlinear absorption conversion in quasi-2D perovskite[J]. Nature Communications, 13, 1-10(2022).

    [51] Berera R, van Grondelle R, Kennis J T M. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems[J]. Photosynthesis Research, 101, 105-118(2009).

    [52] Fang H H, Li X Z, Zhou Y K et al. Ultrafast spectroscopy of hot carriers in perovskites[J]. Acta Optica Sinica, 41, 0823009(2021).

    [53] Achermann M, Bartko A P, Hollingsworth J A et al. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods[J]. Nature Physics, 2, 557-561(2006).

    [54] Klimov V, Bolivar P H, Kurz H. Hot-phonon effects in femtosecond luminescence spectra of electron-hole plasmas in CdS[J]. Physical Review B, 52, 4728(1995).

    [55] Chen F, Cartwright A N, Lu H et al. Time-resolved spectroscopy of recombination and relaxation dynamics in InN[J]. Applied Physics Letters, 83, 4984-4986(2003).

    [56] Shen Q, Ripolles T S, Even J et al. Ultrafast selective extraction of hot holes from cesium lead iodide perovskite films[J]. Journal of Energy Chemistry, 27, 1170-1174(2018).

    [57] Papagiorgis P, Protesescu L, Kovalenko M V et al. Long-lived hot carriers in formamidinium lead iodide nanocrystals[J]. The Journal of Physical Chemistry C, 121, 12434-12440(2017).

    [58] Stranks S D, Eperon G E, Grancini G et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 342, 341-344(2013).

    [59] Sum T C, Mathews N, Xing G C et al. Spectral features and charge dynamics of lead halide perovskites: origins and interpretations[J]. Accounts of Chemical Research, 49, 294-302(2016).

    [60] Chen K, Barker A J, Morgan F L C et al. Effect of carrier thermalization dynamics on light emission and amplification in organometal halide perovskites[J]. The Journal of Physical Chemistry Letters, 6, 153-158(2015).

    [61] Reisinger A, Zory P, Waters R. Cavity length dependence of the threshold behavior in thin quantum well semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 23, 993-999(1987).

    [62] Schmitt-Rink S, Chemla D S, Miller D A B. Linear and nonlinear optical properties of semiconductor quantum wells[J]. Advances in Physics, 38, 89-188(1989).

    [63] Maity P, Merdad N A, Yin J et al. Cascade electron transfer induces slow hot carrier relaxation in CsPbBr3 asymmetric quantum wells[J]. ACS Energy Letters, 6, 2602-2609(2021).

    [64] Liu P Y, Han N, Wang W et al. High-quality ruddlesden-popper perovskite film formation for high-performance perovskite solar cells[J]. Advanced Materials, 33, 2002582(2021).

    [65] Zhang X, Munir R, Xu Z et al. Phase transition control for high performance ruddlesden-popper perovskite solar cells[J]. Advanced Materials, 30, 1707166(2018).

    [66] Dong Y X, Lu D, Xu Z Y et al. 2-thiopheneformamidinium-based 2D ruddlesden-popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis[J]. Advanced Energy Materials, 10, 2000694(2020).

    [67] Jia X G, Jiang J, Zhang Y et al. Observation of enhanced hot phonon bottleneck effect in 2D perovskites[J]. Applied Physics Letters, 112, 143903(2018).

    [68] Ramesh S, Giovanni D, Righetto M et al. Tailoring the energy manifold of quasi-two-dimensional perovskites for efficient carrier extraction[J]. Advanced Energy Materials, 12, 2103556(2022).

    [69] Li X Q, Nakayama H, Arakawa Y. Lifetime of confined LO phonons in quantum dots and its impact on phonon bottleneck issue[J]. Japanese Journal of Applied Physics, 38, 473(1999).

    [70] Li X Q, Nakayama H, Arakawa Y. Phonon bottleneck in quantum dots: role of lifetime of the confined optical phonons[J]. Physical Review B, 59, 5069-5073(1999).

    [71] Verma S D, Gu Q F, Sadhanala A et al. Slow carrier cooling in hybrid Pb-Sn halide perovskites[J]. ACS Energy Letters, 4, 736-740(2019).

    [72] Dursun I, Maity P, Yin J et al. Why are hot holes easier to extract than hot electrons from methylammonium lead iodide perovskite?[J]. Advanced Energy Materials, 9, 1900084(2019).

    [73] Sarkar S, Ravi V K, Banerjee S et al. Terahertz spectroscopic probe of hot electron and hole transfer from colloidal CsPbBr3 perovskite nanocrystals[J]. Nano Letters, 17, 5402-5407(2017).

    [74] Hong H, Zhang J C, Zhang J et al. Ultrafast broadband charge collection from clean graphene/CH3NH3PbI3 interface[J]. Journal of the American Chemical Society, 140, 14952-14957(2018).

    [75] Wu K F, Liang G J, Shang Q Y et al. Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots[J]. Journal of the American Chemical Society, 137, 12792-12795(2015).

    [76] De A, Mondal N, Samanta A. Hole transfer dynamics from photoexcited cesium lead halide perovskite nanocrystals: 1-aminopyrene as hole acceptor[J]. The Journal of Physical Chemistry C, 122, 13617-13623(2018).

    [77] Liu F, Zhang Y H, Ding C et al. Ultrafast electron injection from photoexcited perovskite CsPbI3 QDs into TiO2 nanoparticles with injection efficiency near 99[J]. The Journal of Physical Chemistry Letters, 9, 294-297(2018).

    [78] Mandal S, Tkachenko N V. Multiphoton excitation of CsPbBr3 perovskite quantum dots (PQDs): how many electrons can one PQD donate to multiple molecular acceptors?[J]. The Journal of Physical Chemistry Letters, 10, 2775-2781(2019).

    [79] Ghosh G, Marjit K, Ghosh S et al. Hot hole cooling and transfer dynamics from lead halide perovskite nanocrystals using porphyrin molecules[J]. The Journal of Physical Chemistry C, 125, 5859-5869(2021).

    [80] Chakkamalayath J, Hartland G V, Kamat P V. Light induced processes in CsPbBr3-Au hybrid nanocrystals: electron transfer and expulsion of Au[J]. The Journal of Physical Chemistry C, 125, 17881-17889(2021).

    [81] Liao J F, Cai Y T, Li J Y et al. Plasmonic CsPbBr3-Au nanocomposite for excitation wavelength dependent photocatalytic CO2 reduction[J]. Journal of Energy Chemistry, 53, 309-315(2021).

    [82] Wang G, Liao L P, Elseman A M et al. An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite[J]. Nano Energy, 68, 104383(2020).

    Tools

    Get Citation

    Copy Citation Text

    Shuhan Chen, Xiaochun Liu, Lina Wang, Jue Gong. Research Progress of Perovskite Materials in Hot Carrier Solar Cells[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Mar. 8, 2023

    Accepted: Mar. 22, 2023

    Published Online: Jun. 29, 2023

    The Author Email: Liu Xiaochun (xiaochun@uestc.edu.cn), Gong Jue (jgong@uestc.edu.cn)

    DOI:10.3788/LOP230819

    Topics