Ultrafast Science, Volume. 3, Issue 1, 0041(2023)

Nonlocal Probing of Amplitude Mode Dynamics in Charge-Density-Wave Phase of EuTe4

Ranjana Rathore1,2、*, Himanshu Singhal1,2, Vivek Dwij3,4, Mayanak K Gupta2,5, Abhishek Pathak3, Juzer Ali Chakera1,2, Ranjan Mittal2,5, Aditya Prasad Roy3, Arun Babu3, Ruta Kulkarni4, A Thamizhavel4, Ayman H Said6, and Dipanshu Bansal3,7、*
Author Affiliations
  • 1Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore, MP 452013, India.
  • 2Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, MH 400094, India.
  • 3Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, MH 400076, India.
  • 4Department of Condensed Matter Physics & Materials Science, Tata Institute of Fundamental Research, Mumbai, MH 400005, India.
  • 5Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, MH 400085, India.
  • 6Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA.
  • 7Center for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai, MH 400076, India.
  • show less
    References(72)

    [1] [1] Gruner G. Density waves in solids. Reading (MA): Addison-Wesley; 1994.

    [2] [2] Dressel M, Gruner G. Electrodynamics of solids: Optical properties of electrons in matter. Cambridge (UK): Cambridge University Press; 2002.

    [3] [3] Johannes M, Mazin I. Fermi surface nesting and the origin of charge density waves in metals. Phys Rev B. 2008;77(16): 165135.

    [7] [7] Roy AP, Bajaj N, Mittal R, Babu PD, Bansal D. Quasi-one-dimensional fermi surface nesting and hidden nesting enable multiple Kohn anomalies in α-uranium. Phys Rev Lett. 2021;126(9): 096401.

    [8] [8] Pathak A, Gupta MK, Mittal R, Bansal D. Orbital- and atom-dependent linear dispersion across the Fermi level induces charge density wave instability in EuTe4. Phys Rev B. 2022;105(3): 035120.

    [9] [9] Rathore R, Pathak A, Gupta MK, Mittal R, Kulkarni R, Thamizhavel A, Singhal H, Said AH, Bansal D. Evolution of static charge density wave order, amplitude mode dynamics, and suppression of Kohn anomalies at the hysteretic transition in EuTe4. Phys Rev B. 2023;107(2): 024101.

    [10] [10] Weber F, Rosenkranz S, Castellan JP, Osborn R, Hott R, Heid R, Bohnen KP, Egami T, Said AH, Reznik D. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. Phys Rev Lett. 2011;107(10): 107403.

    [11] [11] Weber F, Hott R, Heid R, Bohnen KP, Rosenkranz S, Castellan JP, Osborn R, Said AH, Leu BM, Reznik D. Optical phonons and the soft mode in 2H-NbSe2. Phys Rev B. 2013;87(24): 245111.

    [12] [12] Maschek M, Rosenkranz S, Heid R, Said AH, Giraldo-Gallo P, Fisher IR, Weber F. Wave-vector-dependent electron-phonon coupling and the charge-density wave transition in TbTe3. Phys Rev B. 2015;91(23): 235146.

    [13] [13] Maschek M, Zocco DA, Rosenkranz S, Heid R, Said AH, Alatas A, Walmsley P, Fisher IR, Weber F. Competing soft phonon modes at the charge-density-wave transitions in DyTe3. Phys Rev B. 2018;98(9): 094304.

    [16] [16] Boring A, Smith J. Plutonium condensed-matter physics: A survey of theory and experiment. Los Alamos Sci. 2000;26(1):90–127.

    [18] [18] Kohn W. Image of the fermi surface in the vibration spectrum of a metal. Phys Rev Lett. 1959;2(9): 393.

    [20] [20] Lv B. Unconventional hysteretic transition in a charge density wave. Physl Rev Lett. 2022;128(3): 036401.

    [21] [21] Zhang C, Wu QY, Yuan YH, Zhang X, Liu H, Liu ZT, Zhang HY, Song JJ, Zhao YZ, Wu FY, et al. Angle-resolved photoemission spectroscopy study of the charge density wave order in layered semiconductor EuTe4. Phys Rev B. 2022;106(20):L201108.

    [24] [24] Gweon G-H, Denlinger JD, Clack JA, Allen JW, Olson CG, DiMasi E, Aronson MC, Foran B, Lee S. Direct observation of complete Fermi surface, imperfect nesting, and gap anisotropy in the high-temperature incommensurate charge-density-wave compound SmTe3. Phys Rev Lett. 1998;81(4): 886.

    [25] [25] Brouet V, Yang WL, Zhou XJ, Hussain Z, Ru N, Shin KY, Fisher IR, Shen ZX. Fermi surface reconstruction in the CDW state of CeTe3 observed by photoemission. Phys Rev Lett. 2004;93(12): 126405.

    [26] [26] Brouet V, Yang WL, Zhou XJ, Hussain Z, Moore RG, He R, Lu DH, Shen ZX, Laverock J, Dugdale SB, et al. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R= Y, La, Ce, Sm, Gd, Tb, and Dy). Physl Rev B. 2008;77(23): 235104.

    [27] [27] Garcia D, Gweon G-H, Zhou SY, Graf J, Jozwiak CM, Jung MH, Kwon YS, Lanzara A. Revealing charge density wave formation in the LaTe2 system by angle resolved photoemission spectroscopy. Phys Rev Lett. 2007;98(16): 166403.

    [28] [28] Lee E, Kim DH, Denlinger JD, Kim J, Kim K, Min BI, Min BH, Kwon SY, Kang J-S. Angle-resolved and resonant photoemission spectroscopy study of the Fermi surface reconstruction in the charge density wave systems CeTe2 and PrTe2. Phys Rev B. 2015;91(12): 125137.

    [29] [29] Lee E, Kim DH, Kim HW, Denlinger JD, Kim H, Kim J, Kim K,Min BI, Min BH, Kwon YS, et al. The 7× 1 Fermi surface reconstruction in a two-dimensional f-electron charge density wave system: PrTe3. Sci Rep. 2016;6(1):1–11.

    [30] [30] Seong S, Lee E, Kwon YS, Min BI, Denlinger JD, Park B-G, Kang S-J. Angle-resolved photoemission spectroscopy study of rare-earth tritelluride charge density wave compounds: RTe3 (R= Pr, Er). Electron Struc. 2021;3(2): 024003.

    [31] [31] Trigo M, Giraldo-Gallo P, Kozina ME, Henighan T, Jiang MP, Liu H, Clark JN, Chollet M, Glownia JM, Zhu D. Coherent order parameter dynamics in SmTe3. Phys Rev B. 2019;99(10): 104111.

    [32] [32] Liu G, Ma X, He K, Li Q, Tan H, Liu Y, Xu J, Tang W, Watanabe K, Taniguchi T, et al. Observation of anomalous amplitude modes in the kagome metal CsV3Sb5. Nat Commun. 2022;13(1):1–8.

    [34] [34] Kim S, Lv Y, Sun XQ, Zhao C, Bielinski N, Murzabekova A, Qu K, Duncan RA, Nguyen QLD, Trigo M, et al. Observation of a massive phason in a charge-density-wave insulator. Nat Mater. 2023;22:429–433.

    [35] [35] Sugai S, Takayanagi Y, Hayamizu N. Phason and amplitudon in the charge-density-wave phase of one-dimensional charge stripes in La2–xSrxCu04. Phys Rev Lett. 2006;96(13): 137003.

    [36] [36] Lavagnini M. Evidence for coupling between charge density waves and phonons in two-dimensional rare-earth tritellurides. Phys Rev B. 2008;78(20): 201101.

    [37] [37] Dolgirev PE, Rozhkov AV, Zong A, Kogar A, Gedik N, Fine BV. Amplitude dynamics of the charge density wave in LaTe3: Theoretical description of pump-probe experiments. Phys Rev Lett. 2020;101(5): 054203.

    [38] [38] Huber T, Mariager SO, Ferrer A, Schäfer H, Johnson JA, Grübel S, Lübcke A, Huber L, Kubacka T, Dornes C, et al. Coherent structural dynamics of a prototypical charge-density-wave-to-metal transition. Phys Rev Lett. 2014;113(2): 026401.

    [39] [39] Yusupov R, Mertelj T, Chu J-H, Fisher I, Mihailovic D. Single-particle and collective mode couplings associated with 1-and 2-directional electronic ordering in metallic RTe−3 (R= Ho, Dy, Tb). Phys Rev Lett. 2008;101(24): 246402.

    [40] [40] Leuenberger D, Sobota JA, Yang S-L, Kemper AF, Giraldo-Gallo P, Moore RG, Fisher IR, Kirchmann PS, Devereaux TP, Shen Z-X. Classification of collective modes in a charge density wave by momentum-dependent modulation of the electronic band structure. Phys Rev B. 2015;91, no. 20: 201106.

    [41] [41] Singer A, Patel SKK, Kukreja R, Uhlir V, Wingert J, Festersen S, Zhu D, Glownia JM, Lemke HT, Nelson S, et al. Photoinduced enhancement of the charge density wave amplitude. Phys Rev Lett. 2016;117(5): 056401.

    [43] [43] Jin F, Itoh T, Goto T. Propagation velocity of exciton polariton in InI single crystals. J Phys Soc Jpn. 1989;58(7):2586–2596.

    [46] [46] Adachi S, Koehl RM, Nelson KA. Real-space and real-time imaging of polariton wavepackets. J Lumin. 2000;87:840–843.

    [47] [47] Wang Y, Petrides I, McNamara G, Hosen MM, Lei S, Wu YC, Hart JL, Lv H, Yan J, Xiao D, et al. Axial Higgs mode detected by quantum pathway interference in RTe3. Nature. 2022;1–6.

    [48] [48] Wu D, Liu QM, Chen SL, Zhong GY, Su J, Shi LY, Tong L, Xu G, Gao P, Wang NL. Layered semiconductor EuTe4 with charge density wave order in square tellurium sheets. Phys Rev Mater. 2019;3(2): 024002.

    [50] [50] Toellner T, Alatas A, Said A. Six reflection meV-monochromator for synchrotron radiation. J Synchrotron Radiat. 2011;18:605–611.

    [52] [52] Said AH, Sinn H, Toellner TS, Alp EE, Gog T, Leu BM, Bean S, Alatas A. High-energy-resolution inelastic X-ray scattering spectrometer at beamline 30-ID of the advanced photon source. J Synchrotron Radiat. 2020;27(3):827–835.

    [53] [53] Lovesey S. Theory of neutron scattering from condensed matter. Oxford: Clarendon Press; 1984.

    [57] [57] Shin K, Brouet V, Ru N, Shen Z, Fisher I. Electronic structure and charge-density wave formation in LaTe−1.95 and CeTe2.00. Phys Rev B. 2005;72(8): 085132.

    [58] [58] Malliakas C, Billinge SJ, Kim HJ, Kanatzidis MG. Square nets of tellurium: Rare-earth dependent variation in the charge-density wave of RETe−3 (RE= rare-earth element). J Am Chem Soc. 2005;127(18):6510–6511.

    [59] [59] Ru N, Condron CL, Margulis GY, Shin KY, Laverock J, Dugdale SB, Toney MF, Fisher IR. Effect of chemical pressure on the charge density wave transition in rare-earth tritellurides RTe3. Phys Rev B. 2008;77(3): 035114.

    [61] [61] Pathak A, Pawnday A, Roy AP, Aref AJ, Dargush GF, Bansal D. MCBTE: A variance-reduced Monte Carlo solution of the linearized Boltzmann transport equation for phonons. Comput Phys Commun. 2021;265: 108003.

    [62] [62] Tritt T. Thermal conductivity: Theory, properties, and applications. New York: Kluwer Academic/Plenum Publishers; 2004.

    [63] [63] Klemens P. Solid state physics: Advances in research and applications—Thermal conductivity and lattice vibrational modes. New York: Academic Press Inc.; 1958.

    [64] [64] Cavalleri A, Siders CW, Brown FLH, Leitner DM, Tóth C, Squier JA, Barty CPJ, Wilson KR, Sokolowski-Tinten K, Horn von Hoegen M, et al. Anharmonic lattice dynamics in germanium measured with ultrafast X-ray diffraction. Phys Rev Lett. 2000;85(3):586.

    [65] [65] Wingert J, Singer A, Patel SKK, Kukreja R, Verstraete MJ, Romero AH, Uhlir V, Festersen S, Zhu D, Glownia JM, et al. Direct time-domain determination of electron-phonon coupling strengths in chromium. Phys Rev B. 2020;102(4): 041101.

    [66] [66] Taboada-Gutiérrez J, Álvarez-Pérez G, Duan J, Ma W, Crowley K, Prieto I, Bylinkin A, Autore M, Volkova H, Kimura K, et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat Mater. 2020;19(9):964–968.

    [67] [67] Wu Y, Ou Q, Yin Y, Li Y, Ma W, Yu W, Liu G, Cui X, Bao X,Duan J, et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nat Commun. 2020;11(1):1–8.

    [68] [68] Pavlidis G, Schwartz JJ, Matson J, Folland T, Liu S, Edgar JH, Caldwell JD, Centrone A. Experimental confirmation of long hyperbolic polariton lifetimes in monoisotopic (10B) hexagonal boron nitride at room temperature. APL Mater. 2021;9(9): 091109.

    [69] [69] Ni G, McLeod AS, Sun Z, Matson JR, Lo CFB, Rhodes DA, Ruta FL, Moore SL, Vitalone RA, Cusco R, et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 2021;21(13):5767–5773.

    [71] [71] Ikehara T, Itoh T. Dynamical behavior of the exciton polariton in CuCl: Coherent propagation and momentum relaxation. Phys Rev B. 1991;44(17):9283.

    [72] [72] Pandya R, Ashoka A, Georgiou K, Sung J, Jayaprakash R, Renken S, Gai L, Shen Z, Rao A, Musser AJ. Tuning the coherent propagation of organic exciton-polaritons through dark state delocalization. Adv Sci (Weihn). 2022; 2105569.

    Tools

    Get Citation

    Copy Citation Text

    Ranjana Rathore, Himanshu Singhal, Vivek Dwij, Mayanak K Gupta, Abhishek Pathak, Juzer Ali Chakera, Ranjan Mittal, Aditya Prasad Roy, Arun Babu, Ruta Kulkarni, A Thamizhavel, Ayman H Said, Dipanshu Bansal. Nonlocal Probing of Amplitude Mode Dynamics in Charge-Density-Wave Phase of EuTe4[J]. Ultrafast Science, 2023, 3(1): 0041

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 3, 2023

    Accepted: Aug. 1, 2023

    Published Online: Dec. 4, 2023

    The Author Email: Rathore Ranjana (ranjana@rrcat.gov.in), Bansal Dipanshu (dipanshu@iitb.ac.in)

    DOI:10.34133/ultrafastscience.0041

    Topics