Journal of the European Optical Society-Rapid Publications, Volume. 19, Issue 1, 2022017(2023)

Ultra-broadband and tunable infrared absorber based on VO2 hybrid multi-layer nanostructure

Junyi Yan1, Yi Li1,2、*, Mengdi Zou1, Jiaqing Zhuang1, Jincheng Mei1, Xingping Wang1, Xin Zhang1, Yuda Wu1, Chuang Peng1, Wenyan Dai1, Zhen Yuan1, and Ke Lin1
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Shanghai Key Laboratory of Modern Optical System, Shanghai 200093, China
  • show less
    References(45)

    [1] A.A. Basharin, M. Kafesaki, E.N. Economou, C.M. Soukoulis, V.A. Fedotov, V. Savinov, N.I. Zheludev. Dielectric metamaterials with toroidal dipolar response. Phys. Rev. X, 5, 11(2015).

    [2] G.R. Keiser, K. Fan, X. Zhang, R.D. Averitt. Towards dynamic, tunable, and nonlinear metamaterials via near field interactions: A review. J. Infrared Millim. Terahertz Waves, 34, 709-723(2013).

    [3] A. Andryieuski, A.V. Lavrinenko. Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach. Opt. Express, 21, 9144-9155(2013).

    [4] A.A. High, R.C. Devlin, A. Dibos, M. Polking, D.S. Wild, J. Perczel, N.P. de Leon, M.D. Lukin, H. Park. Visible-frequency hyperbolic metasurface. Nature, 522, 192-196(2015).

    [5] Y. Jiang, Z.Y. Liu, N. Matsuhisa, D.P. Qi, W.R. Leow, H. Yang, J.C. Yu, G. Chen, Y.Q. Liu, C.J. Wan, Z.J. Liu, X.D. Chen. Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors. Adv. Mater., 30, 8(2018).

    [6] B.I. Wu, W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, J.A. Kong. A study of using metamaterials as antenna substrate to enhance gain. Prog. Electromagn. Res., 51, 295-328(2005).

    [7] S. Chandra, D. Franklin, J. Cozart, A. Safaei, D. Chanda. Adaptive multispectral infrared camouflage. ACS Photonics, 5, 4513-4519(2018).

    [8] J. Zou, J. Zhang, Y. He, Q. Hong, C. Quan, Z. Zhu. Multiband metamaterial selective absorber for infrared stealth. Appl. Opt., 59, 8768-8772(2020).

    [9] Y. Guo, C.L. Cortes, S. Molesky, Z. Jacob. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett., 101, 5(2012).

    [10] B.X. Wang, Y.H. He, P.C. Lou, H.X. Zhu. Multi-band terahertz superabsorbers based on perforated square-patch metamaterials. Nanoscale Adv., 3, 455-462(2021).

    [11] B.J. Lee, L.P. Wang, Z.M. Zhang. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Opt. Express, 16, 11328-11336(2008).

    [12] N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 4(2008).

    [13] A. Motogaito, R. Tanaka, K. Hiramatsu. Fabrication of perfect plasmonic absorbers for blue and near-ultraviolet lights using double-layer wire-grid structures. J. Eur. Opt. Soc. Rapid Publ., 17, 6(2021).

    [14] P. Yu, H. Yang, X. Chen, Z. Yi, W. Yao, J. Chen, Y. Yi, P. Wu. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy, 158, 227-235(2020).

    [15] S. Butun, K. Aydin. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers. Opt. Express, 22, 19457-19468(2014).

    [16] R. Li Voti. Optimization of a perfect absorber multilayer structure by genetic algorithms. J. Eur. Opt. Soc. Rapid Publ., 14, 12(2018).

    [17] H. Li, H. Peng, C. Ji, L. Lu, Z. Li, J. Wang, Z. Wu, Y. Jiang, J. Xu, Z. Liu. Electrically tunable mid-infrared antennas based on VO2. J. Mod. Opt., 65, 1809-1816(2018).

    [18] J.R. Liang, P. Li, L.W. Zhou, J.B. Guo, Y.R. Zhao. Near-infrared tunable multiple broadband perfect absorber base on VO2 semi-shell arrays photonic microstructure and gold reflector. Mater. Res. Express, 5, 8(2018).

    [19] A.D. Boardman, V.V. Grimalsky, Y.S. Kivshar, S.V. Koshevaya, M. Lapine, N.M. Litchinitser, V.N. Malnev, M. Noginov, Y.G. Rapoport, V.M. Shalaev. Active and tunable metamaterials. Laser Photonics Rev., 5, 287-307(2011).

    [20] S.A. Pope, H. Laalej. A multi-layer active elastic metamaterial with tuneable and simultaneously negative mass and stiffness. Smart Mater. Struct., 23, 075020(2014).

    [21] Y. Oka, T. Yao, N. Yamamoto. Structural phase transition of VO2(B) to VO2(A). J. Mater. Chem. (UK), 1, 815-818(1991).

    [22] S. Wang, L. Kang, D.H. Werner. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2). Sci. Rep., 7, 4326(2017).

    [23] B. Cao, Y. Li, X. Liu, H. Fei, M. Zhang, Y. Yang. Switchable broadband metamaterial absorber/reflector based on vanadium dioxide rings. Appl. Opt., 59, 8111-8117(2020).

    [24] S.H. Ban, H.Y. Meng, X. Zhai, X.X. Xue, Q. Lin, H.J. Li, L.L. Wang. Tunable triple-band and broad-band convertible metamaterial absorber with bulk Dirac semimetal and vanadium dioxide. J. Phys. D Appl. Phys., 54, 6(2021).

    [25] X.L. Song, Z.Z. Liu, J. Scheuer, Y.J. Xiang, K. Aydin. Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers. J. Phys. D Appl. Phys., 52, 7(2019).

    [26] A. Sakurai, B. Zhao, Z.M. Zhang. Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model. J. Quant. Spectrosc. Radiat. Transf., 149, 33-40(2014).

    [27] M.J. Dicken, K. Aydin, I.M. Pryce, L.A. Sweatlock, E.M. Boyd, S. Walavalkar, J. Ma, H.A. Atwater. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express, 17, 18330-18339(2009).

    [28] L. Lei, F. Lou, K.Y. Tao, H.X. Huang, X. Cheng, P. Xu. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photonics Res., 7, 734-741(2019).

    [29] Z. Liu, G. Liu, X. Liu, Y. Wang, G. Fu. Titanium resonators based ultra-broadband perfect light absorber. Opt. Mater., 83, 118-123(2018).

    [30] S. Farsinezhad, T. Shanavas, N. Mahdi, A.M. Askar, P. Kar, H. Sharma, K. Shankar. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances. Nanotechnology, 29, 154006(2018).

    [31] K.W. Oh, C.H. Ahn. A new flip-chip bonding technique using micromachined conductive polymer bumps. IEEE Trans. Adv. Packag., 22, 586-591(1999).

    [32] F.J. van Soest, H. van Wolferen, H. Hoekstra, R.M. de Ridder, K. Worhoff, P.V. Lambeck. Laser interference lithography with highly accurate interferometric alignment. Jpn. J. Appl. Phys., 44, 6568-6570(2005).

    [33] H.-Y. Wang, Z.-H. Wu. Study on the alignment technology process of double-sided lithography on glass substrate. Semicond. Technol. (China), 31, 576-578(2006).

    [34] D.W. Lynch, W.R. Hunter. Palik E.D. (ed.), Handbook of Optical Constants of Solids(1997).

    [35] G. Duan, J. Schalch, X. Zhao, J. Zhang, R.D. Averitt, X. Zhang. Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies. Opt. Express, 26, 2242-2251(2018).

    [36] P. Zhou, G. Zheng, Y. Chen, L. Xu, F. Xian. Dynamically tunable perfect absorption based on the phase transition of vanadium dioxide with aluminum hole arrays. Solid State Commun., 288, 48-52(2019).

    [37] Y. Luo, Z. Liang, D. Meng, J. Tao, J. Liang, C. Chen, J. Lai, Y. Qin, J. Lv, Y. Zhang. Ultra-broadband and high absorbance metamaterial absorber in long wavelength infrared based on hybridization of embedded cavity modes. Opt. Commun., 448, 1-9(2019).

    [38] H.-T. Chen. Interference theory of metamaterial perfect absorbers. Opt. Express, 20, 7165-7172(2012).

    [39] D.W. Oh, C. Ko, S. Ramanathan, D.G. Cahill. Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2. Appl. Phys. Lett., 96, 3(2010).

    [40] D. Hou, L.U. Yuan, Z. Liu, H.U.J.M.R. Jie. Temperature rising in VO2 thin films under irradiation of mid-infrared laser based on external heat source. Mater. Rev., 31, 91-95(2017).

    [41] C.-W. Cheng, M.N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, Y.-C. Chang. Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Opt. Express, 20, 10376-10381(2012).

    [42] W.Q. Zhao, Y. Li, R. Tian, J.X. Li, L.N. Fan, J.Z. Zhou, J. Liu, X. Zhang, C. Peng, Y.D. Wu, M.D. Zou. A dynamically temperature tunable broadband infrared absorber with cross square nanocolumn arrays. Opt. Commun., 474, 7(2020).

    [43] H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, K. Aydin. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films. Sci. Rep., 5, 13384(2015).

    [44] T. Moradi, A. Hatef. Thermal tracing of a highly reconfigurable and wideband infrared heat sensor based on vanadium dioxide. J. Appl. Phys., 127, 9(2020).

    [45] M.D. Zou, Y. Li, W.Q. Zhao, X. Zhang, Y.D. Wu, C. Peng, L.N. Fan, J.X. Li, J.Y. Yan, J.Q. Zhuang, J.C. Mei, X.P. Wang. Dynamically tunable perfect absorber based on VO2-Au hybrid nanodisc array. Opt. Eng., 60, 11(2021).

    Tools

    Get Citation

    Copy Citation Text

    Junyi Yan, Yi Li, Mengdi Zou, Jiaqing Zhuang, Jincheng Mei, Xingping Wang, Xin Zhang, Yuda Wu, Chuang Peng, Wenyan Dai, Zhen Yuan, Ke Lin. Ultra-broadband and tunable infrared absorber based on VO2 hybrid multi-layer nanostructure[J]. Journal of the European Optical Society-Rapid Publications, 2023, 19(1): 2022017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 20, 2022

    Accepted: Dec. 5, 2022

    Published Online: Aug. 31, 2023

    The Author Email: Li Yi (liyi@usst.edu.cn)

    DOI:10.1051/jeos/2022017

    Topics