Optics and Precision Engineering, Volume. 22, Issue 12, 3409(2014)

Visual tracking of moving objects based on piecewise fusion weight and multi-strategy

SU Yan-zhao*... LI Ai-hua, WANG Tao, ZHANG Wei and JIN Guang-zhi |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(30)

    [1] [1] FAN J L, SHEN X H, WU Y. Scribble tracker: a matting-based approach for robust tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1633-1644.

    [2] [2] YANG H, SHAO L, ZHENG F, et al.. Recent advances and trends in visual tracking: A review [J]. Neurocomputing, 2011, 74(18): 3823-3831.

    [3] [3] COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington DC: IEEE Computer Society, 2000: 142-149.

    [5] [5] WENG S K, KUO C M, TU S K. Video object tracking using adaptive Kalman filter [J]. Journal of Visual Communication and Image Representation, 2006, 17(6): 1190-1208.

    [6] [6] ISARD M, BLAKE A. Condensation-conditional density propagation for visual tracking [J]. International Journal of Computer Vision, 1998, 29 (1): 5-28.

    [9] [9] COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (5): 564-577.

    [10] [10] COLLINS R, LIU Y, LEORDEANU M. Online selection of discriminative tracking features [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (10): 1631-1643.

    [11] [11] BIRCHFIELD S T, RANGARAJAN S. Spatiograms versus histograms for region-based tracking [C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC: IEEE Computer Society, 2005: 1158-1163.

    [12] [12] JEYAKAR J, BABU R V, RAMAKRISHNAN K R. Robust object tracking with background-weighted local kernels [J]. Computer Vision and Image Understanding, 2008, 112(3): 296-309.

    [13] [13] LI S X, CHANG H X, ZHU C F. Adaptive pyramid mean shift for global real-time visual tracking [J]. Image and Vision Computing, 2010, 28(3): 424-437.

    [14] [14] NING J, ZHANG L, ZHANG D, et al.. Robust mean-shift tracking with corrected background-weighted histogram [J]. IET Computer Vision, 2012, 6(1): 62-69.

    [15] [15] WANG L, PAN C, XIANG S. Mean-shift tracking algorithm with weight fusion strategy [C]. Proceedings of 18th IEEE International Conference on Image Processing, New York, USA: IEEE Press, 2011: 473-476.

    [16] [16] CHOI H S, KIM I S, CHOI J Y. Combining histogram-wise and pixel-wise matchings for kernel tracking through constrained optimization [J]. Computer Vision and Image Understanding, 2014, 118: 61-70.

    [19] [19] CHENG Y. Mean shift, mode seeking, and clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1995, 17(8): 790-799.

    [20] [20] COMANICIU D, MEER P. Mean shift: A robust approach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.

    [21] [21] BRADSKI G. Computer vision face tracking for use in a perceptual user interface [C]. Proceedings of IEEE Workshop On Applications of Computer Vision, New Jerseys, USA: IEEE Press, 1998: 214-219.

    [22] [22] WANG L F, WU H Y, PAN C H. Mean-Shift object tracking with a novel back-projection calculation method[C]. Proceedings of the 9th Asian Conference on Computer Vision-Volume,Berlin,Germany,Springer-Verlag Press, 2009: 83-92.

    [23] [23] OTSU N. A threshold selection method from gray-level histogram [J]. IEEE Trans. on Systems, Man, and Cybernetics, 1979, 9: 62-66.

    [24] [24] BRINK A D, PENDOCK N E. Minimum cross-entropy threshold selection [J]. Pattern Recognition, 1996, 29(1): 179-188.

    [25] [25] NING J, ZHANG L, ZHANG D, et al.. Scale and orientation adaptive mean shift tracking [J]. IET Computer Vision, 2012, 6(1): 52-61.

    [26] [26] JIANG Z L, LI S F, GAO D F. An adaptive mean shift tracking method using multiscale images [C]. Proceedings of International Conference on Wavelet Analysis and Pattern Recognition, New Jerseys, USA: IEEE, 2007: 1060-1066.

    [27] [27] PENG N S, YANG J, LIU Z. Mean shift blob tracking with kernel histogram filtering and hypothesis testing[J]. Pattern Recognition Letters, 2005, 26(5): 605-614.

    [28] [28] FAN J, SHEN X, WU Y. Closed-loop adaptation for robust tracking [C]. Proceedings of the 11th European Conference on Computer Vision, Berlin,Germany,Springer-Verlag Press, 2010: 411-424.

    [29] [29] SEVILLA-LARA L, LEARNED-MILLER E. Distribution fields for tracking [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, USA: IEEE Press, 2012: 1910-1917.

    [30] [30] WU Y, LIM J, YANG M H. Online object tracking: A benchmark [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, USA: IEEE Press, 2013: 2411-2418.

    Tools

    Get Citation

    Copy Citation Text

    SU Yan-zhao, LI Ai-hua, WANG Tao, ZHANG Wei, JIN Guang-zhi. Visual tracking of moving objects based on piecewise fusion weight and multi-strategy[J]. Optics and Precision Engineering, 2014, 22(12): 3409

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 4, 2014

    Accepted: --

    Published Online: Jan. 13, 2015

    The Author Email: Yan-zhao SU (syzlhh@163.com)

    DOI:10.3788/ope.20142212.3409

    Topics