Acta Optica Sinica, Volume. 43, Issue 16, 1623017(2023)

Progress of Silicon Carbide Integrated Photonics

Chengli Wang1,2, Jiachen Cai1,2, Liping Zhou1,2, Ailun Yi1, Bingcheng Yang1,2, Yuanhao Qin1,2, Jiaxiang Zhang1,2、**, and Xin Ou1,2、*
Author Affiliations
  • 1National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(77)

    [1] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 113, 1151-1158(1966).

    [2] Won R. Integrating silicon photonics[J]. Nature Photonics, 4, 498-499(2010).

    [3] Thomson D, Zilkie A, Bowers J E et al. Roadmap on silicon photonics[J]. Journal of Optics, 18, 073003(2016).

    [4] Pu M H, Ottaviano L, Semenova E et al. Efficient frequency comb generation in AlGaAs-on-insulator[J]. Optica, 3, 823-826(2016).

    [5] Yi X, Yang Q F, Yang K Y et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator[J]. Optica, 2, 1078-1085(2015).

    [6] Boes A, Chang L, Langrock C et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 379, eabj4396(2023).

    [7] Kogelnik H. Theory of optical waveguides[J]. Guided-Wave Optoelectronics, 7-88(1988).

    [8] Zhuang R, Hong J J, Liu A P et al. Coupling between waveguides in three-dimensional integrated optical chip[J]. Laser & Optoelectronics Progress, 58, 1923001(2021).

    [9] Liang H, Wei F, Sun Y G et al. A 1310 nm band narrow linewidth hybrid integrated external cavity semiconductor laser based on fiber Bragg gratings[J]. Chinese Journal of Lasers, 48, 2001002(2021).

    [10] Jalali B, Fathpour S. Silicon photonics[J]. Journal of Lightwave Technology, 24, 4600-4615(2006).

    [11] Doerr C, Chen L, Vermeulen D et al. Single-chip silicon photonics 100-Gb/s coherent transceiver[C], Th5C.1(2014).

    [12] Doerr C, Heanue J, Chen L et al. Silicon photonics coherent transceiver in a ball-grid array package[C], Th5D.5(2017).

    [13] Fathololoumi S, Hui D, Jadhav S et al. 1.6 Tbps silicon photonics integrated circuit and 800 gbps photonic engine for switch co-packaging demonstration[J]. Journal of Lightwave Technology, 39, 1155-1161(2021).

    [14] Liu J Q, Huang G H, Wang R N et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits[J]. Nature Communications, 12, 2236(2021).

    [15] Qiao L L, Wang M, Wu R B et al. Ultra-low loss lithium niobate photonics[J]. Acta Optica Sinica, 41, 0823012(2021).

    [16] Liu S J, Zheng Y L, Chen X F. Nonlinear frequency conversion in lithium niobate thin films[J]. Acta Optica Sinica, 41, 0823013(2021).

    [17] Liu Y, Deng Y, Wei H et al. Design of flat optical frequency comb based on lithium niobate optical waveguide[J]. Chinese Journal of Lasers, 48, 1301001(2021).

    [18] Foty D, Gildenblat G. CMOS scaling theory - why our “theory of everything” still works, and what that means for the future[C], 27-38(2005).

    [19] Lin Z X, Kang Z, Xu P P et al. Turnkey generation of Kerr soliton microcombs on thin-film lithium niobate on insulator microresonators powered by the photorefractive effect[J]. Optics Express, 29, 42932-42944(2021).

    [20] Kippenberg T J, Gaeta A L, Lipson M et al. Dissipative kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).

    [21] Brasch V, Geiselmann M, Herr T et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation[J]. Science, 351, 357-360(2016).

    [22] Del’Haye P, Schliesser A, Arcizet O et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007).

    [23] Vico Triviño N, Dharanipathy U, Carlin J F et al. Integrated photonics on silicon with wide bandgap GaN semiconductor[J]. Applied Physics Letters, 102, 081120(2013).

    [24] Sato H, Abe M, Shoji I et al. Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide[J]. Journal of the Optical Society of America B, 26, 1892-1896(2009).

    [25] Zhang J S, Zhang H J, Sun H. Controlling optical bistability through quantum coherence in tin-vacancy color centers in diamond[J]. Acta Optica Sinica, 40, 1219001(2020).

    [26] Castelletto S, Boretti A. Silicon carbide color centers for quantum applications[J]. Journal of Physics: Photonics, 2, 022001(2020).

    [27] Lohrmann A, Johnson B C, McCallum J C et al. A review on single photon sources in silicon carbide[J]. Reports on Progress in Physics, 80, 034502(2017).

    [28] Son N T, Anderson C P, Bourassa A et al. Developing silicon carbide for quantum spintronics[J]. Applied Physics Letters, 116, 190501(2020).

    [29] Yi A L, Wang C L, Zhou L P et al. Silicon carbide for integrated photonics[J]. Applied Physics Reviews, 9, 031302(2022).

    [30] Bracher D O, Zhang X Y, Hu E L. Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 4060-4065(2017).

    [31] Lu X Y, Lee J Y, Feng P X L et al. High Q silicon carbide microdisk resonator[J]. Applied Physics Letters, 104, 181103(2014).

    [32] Zheng Y, Pu M H, Yi A L et al. 4H-SiC microring resonators for nonlinear integrated photonics[J]. Optics Letters, 44, 5784-5787(2019).

    [33] Zheng Y, Yi A, Ye C et al. Efficient second-harmonic generation in silicon carbide nanowaveguides[C](2022).

    [34] Cardenas J, Yu M J, Okawachi Y et al. Optical nonlinearities in high-confinement silicon carbide waveguides[J]. Optics Letters, 40, 4138-4141(2015).

    [35] Fan T R, Moradinejad H, Wu X et al. High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform[J]. Optics Express, 26, 25814-25826(2018).

    [36] Fan T R, Wu X, Eftekhar A A et al. High-quality integrated microdisk resonators in the visible-to-near-infrared wavelength range on a 3C-silicon carbide-on-insulator platform[J]. Optics Letters, 45, 153-156(2019).

    [37] Yi A L, Zheng Y, Huang H et al. Wafer-scale 4H-silicon carbide-on-insulator (4H-SiCOI) platform for nonlinear integrated optical devices[J]. Optical Materials, 107, 109990(2020).

    [38] Song B S, Asano T, Jeon S et al. Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide[J]. Optica, 6, 991-995(2019).

    [39] Wang C L, Fang Z W, Yi A L et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics[J]. Light: Science & Applications, 10, 139(2021).

    [40] Guidry M A, Yang K Y, Lukin D M et al. Optical parametric oscillation in silicon carbide nanophotonics[J]. Optica, 7, 1139-1142(2020).

    [41] Cai L T, Li J W, Wang R X et al. Octave-spanning microcomb generation in 4H-silicon-carbide-on-insulator photonics platform[J]. Photonics Research, 10, 870-876(2022).

    [42] Lukin D M, Dory C, Guidry M A et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics[J]. Nature Photonics, 14, 330-334(2020).

    [43] Fan T, Moradinejad H, Wu X et al. High Q Integrated Photonic Microresonators on 3C SiC-on-Insulator Platform[C](2018).

    [44] Wu X, Fan T R, Eftekhar A A et al. High-Q microresonators integrated with microheaters on a 3C-SiC-on-insulator platform[J]. Optics Letters, 44, 4941-4944(2019).

    [45] Zheng Y, Pu M H, Yi A L et al. High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator[J]. Optics Express, 27, 13053-13060(2019).

    [46] Lukin D, Dory C, Radulaski M et al. 4H-SiC-on-insulator platform for quantum photonics[C], SM2F.6(2019).

    [47] Vuckovic J. Connecting quantum systems through optimized photonics (Conference Presentation)[J]. Proceedings of SPIE, 11091, 1109104(2019).

    [48] Lukin D M, Guidry M A, Vučković J. Silicon carbide: from abrasives to quantum photonics[J]. Optics and Photonics News, 32, 34-41(2021).

    [49] Guidry M A, Lukin D M, Yang K Y et al. Quantum optics of soliton microcombs[J]. Nature Photonics, 16, 52-58(2022).

    [50] Crook A L, Anderson C P, Miao K C et al. Purcell enhancement of a single silicon carbide color center with coherent spin control[J]. Nano Letters, 20, 3427-3434(2020).

    [51] Wang C L, Shen C, Yi A L et al. Visible and near-infrared microdisk resonators on a 4H-silicon-carbide-on-insulator platform[J]. Optics Letters, 46, 2952-2955(2021).

    [52] Zhou L P, Wang C L, Yi A L et al. Photonic crystal nanobeam cavities based on 4H-silicon carbide on insulator[J]. Chinese Optics Letters, 20, 031302(2022).

    [53] Yamada S, Song B S, Asano T et al. Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths[J]. Applied Physics Letters, 99, 201102(2011).

    [54] Powell K, Li L W, Shams-Ansari A et al. Integrated silicon carbide electro-optic modulator[J]. Nature Communications, 13, 1851(2022).

    [55] Fan T R, Wu X, Vangapandu S R M et al. Racetrack microresonator based electro-optic phase shifters on a 3C silicon-carbide-on-insulator platform[J]. Optics Letters, 46, 2135-2158(2021).

    [56] Wang R X, Li J W, Cai L T et al. Investigation of the electro-optic effect in high-Q 4H-SiC microresonators[J]. Optics Letters, 48, 1482-1485(2023).

    [57] Wang C L, Yi A L, Zheng P C et al. High yield preparation of flexible single-crystalline 4H-silicon carbide nanomembranes via buried micro-trenches[J]. Optical Materials, 115, 111068(2021).

    [58] Melzak J M. Silicon carbide for RF MEMS[C], 1629-1632(2003).

    [59] Picqué N, Hänsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).

    [60] Trabesinger A. Nobel Prize 2005: Glauber, Hall and Hänsch[J]. Nature Physics, 1, 930-930(2005).

    [61] Chang L, Liu S T, Bowers J E. Integrated optical frequency comb technologies[J]. Nature Photonics, 16, 95-108(2022).

    [62] Papp S B, Beha K, Del’Haye P et al. Microresonator frequency comb optical clock[J]. Optica, 1, 10-14(2014).

    [63] Gao J P, Zhao M M, Lu J et al. Wide optical frequency comb system based on single intensity modulator[J]. Laser & Optoelectronics Progress, 58, 0913001(2021).

    [64] Wang C L, Li J, Yi A L et al. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform[J]. Light: Science & Applications, 11, 341(2022).

    [65] Wang C L, Li J, Yi A L et al. Soliton microcombs in silicon-carbide microresonators[C](2022).

    [66] Jung H, Stoll R, Guo X et al. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator[J]. Optica, 1, 396-399(2014).

    [67] Liu X W, Sun C Z, Xiong B et al. Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities[J]. Applied Physics Letters, 113, 171106(2018).

    [68] Castelletto S. Silicon carbide single-photon sources: challenges and prospects[J]. Materials for Quantum Technology, 1, 023001(2021).

    [69] Wang J W, Sciarrino F, Laing A et al. Integrated photonic quantum technologies[J]. Nature Photonics, 14, 273-284(2020).

    [70] Castelletto S, Johnson B C, Ivády V et al. A silicon carbide room-temperature single-photon source[J]. Nature Materials, 13, 151-156(2014).

    [71] Koehl W F, Buckley B B, Heremans F J et al. Room temperature coherent control of defect spin qubits in silicon carbide[J]. Nature, 479, 84-87(2011).

    [72] Feynman R P, Zee A[M]. QED: the strange theory of light and matter(2006).

    [73] Jacob Z, Smolyaninov I I, Narimanov E E. Broadband Purcell effect: radiative decay engineering with metamaterials[J]. Applied Physics Letters, 100, 181105(2012).

    [74] Babin C, Stöhr R, Morioka N et al. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence[J]. Nature Materials, 21, 67-73(2022).

    [75] Chen Y C, Salter P S, Niethammer M et al. Laser writing of scalable single color centers in silicon carbide[J]. Nano Letters, 19, 2377-2383(2019).

    [76] Day A M, Dietz J R, Sutula M et al. Laser writing of spin defects in nanophotonic cavities[J]. Nature Materials, 22, 696-702(2023).

    [77] Lukin D M, Guidry M A, Vučković J. Integrated quantum photonics with silicon carbide: challenges and prospects[J]. PRX Quantum, 1, 020102(2020).

    Tools

    Get Citation

    Copy Citation Text

    Chengli Wang, Jiachen Cai, Liping Zhou, Ailun Yi, Bingcheng Yang, Yuanhao Qin, Jiaxiang Zhang, Xin Ou. Progress of Silicon Carbide Integrated Photonics[J]. Acta Optica Sinica, 2023, 43(16): 1623017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: May. 10, 2023

    Accepted: Jun. 27, 2023

    Published Online: Aug. 1, 2023

    The Author Email: Zhang Jiaxiang (jiaxiang.zhang@mail.sim.ac.cn), Ou Xin (ouxin@mail.sim.ac.cn)

    DOI:10.3788/AOS230960

    Topics