Photonics Research, Volume. 10, Issue 4, 855(2022)

Topological multipolar corner state in a supercell metasurface and its interplay with two-dimensional materials

Zhaojian Zhang1, Junbo Yang1,2、*, Te Du1, and Xinpeng Jiang1
Author Affiliations
  • 1College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
  • 2Center of Material Science, National University of Defense Technology, Changsha 410073, China
  • show less
    References(84)

    [1] M. Z. Hasan, C. L. Kane. Colloquium: topological insulators. Rev. Mod. Phys., 82, 3045-3067(2010).

    [2] X. L. Qi, S. C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 83, 1057-1110(2011).

    [3] M. J. Gilbert. Topological electronics. Commun. Phys., 4, 70(2021).

    [4] S. D. Huber. Topological mechanics. Nat. Phys., 12, 621-623(2016).

    [5] X. Zhang, M. Xiao, Y. Cheng, M. H. Lu, J. Christensen. Topological sound. Commun. Phys., 1, 97(2018).

    [6] L. Lu, J. D. Joannopoulos, M. Soljacic. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [7] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [8] Z. Chen, M. Segev. Highlighting photonics: looking into the next decade. eLight, 1, 2(2021).

    [9] X. T. He, E. T. Liang, J. J. Yuan, H. Y. Qiu, X. D. Chen, F. L. Zhao, J. W. Dong. A silicon-on-insulator slab for topological valley transport. Nat. Commun., 10, 872(2019).

    [10] M. I. Shalaev, W. Walasik, A. Xu, Y. Tsukernik, N. M. Litchinitser. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol., 14, 31-34(2019).

    [11] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, S. D. Huber. Observation of a phononic quadrupole topological insulator. Nature, 555, 342-345(2018).

    [12] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, G. Bahl. A quantized microwave quadrupole insulator with topologically protected corner states. Nature, 555, 346-350(2018).

    [13] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, R. Thomale. Topolectrical-circuit realization of topological corner modes. Nat. Phys., 14, 925-929(2018).

    [14] B. Y. Xie, H. F. Wang, H. X. Wang, X. Y. Zhu, J. H. Jiang, M. H. Lu, Y. F. Chen. Second-order photonic topological insulator with corner states. Phys. Rev. B, 98, 205147(2018).

    [15] B. Y. Xie, G. X. Su, H. F. Wang, H. Su, X. P. Shen, P. Zhan, M. H. Lu, Z. L. Wang, Y. F. Chen. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett., 122, 233903(2019).

    [16] Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, S. Iwamoto. Photonic crystal nanocavity based on a topological corner state. Optica, 6, 786-789(2019).

    [17] X. Xie, W. Zhang, X. He, S. Wu, J. Dang, K. Peng, X. Xu. Cavity quantum electrodynamics with second-order topological corner state. Laser Photon. Rev., 14, 1900425(2020).

    [18] W. Zhang, X. Xie, H. Hao, J. Dang, S. Xiao, S. Shi, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, X. Xu. Low-threshold topological nanolasers based on the second-order corner state. Light Sci. Appl., 9, 109(2020).

    [19] H. R. Kim, M. S. Hwang, D. Smirnova, K. Y. Jeong, Y. Kivshar, H. G. Park. Multipolar lasing modes from topological corner states. Nat. Commun., 11, 5758(2020).

    [20] P. Törmä, W. L. Barnes. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys., 78, 013901(2014).

    [21] D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, T. Shegai. Novel nanostructures and materials for strong light–matter interactions. ACS Photon., 5, 24-42(2018).

    [22] D. N. Basov, M. M. Fogler, F. J. García de Abajo. Polaritons in van der Waals materials. Science, 354, aag1992(2016).

    [23] N. Rivera, I. Kaminer. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys., 2, 538-561(2020).

    [24] A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, A. Bramati. Exciton–polariton spin switches. Nat. Photonics, 4, 361-366(2010).

    [25] E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, T. W. Ebbesen. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater., 14, 1123-1129(2015).

    [26] A. Thomas, L. Lethuillier-Karl, K. Nagarajan, M. A. Vergauwe, J. George, T. Chervy, A. Shalabney, E. Devaux, C. Genet, J. Moran, T. W. Ebbesen. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science, 363, 615-619(2019).

    [27] T. Karzig, C. E. Bardyn, N. H. Lindner, G. Refael. Topological polaritons. Phys. Rev. X, 5, 031001(2015).

    [28] D. D. Solnyshkov, G. Malpuech, P. St-Jean, S. Ravets, J. Bloch, A. Amo. Microcavity polaritons for topological photonics. Opt. Mater. Express, 11, 1119-1142(2021).

    [29] S. Klembt, T. H. Harder, O. A. Egorov, K. Winkler, R. Ge, M. A. Bandres, M. Emmerling, L. Worschech, T. C. H. Liew, M. Segev, C. Schneider, S. Höfling. Exciton-polariton topological insulator. Nature, 562, 552-556(2018).

    [30] P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. le Gratiet, I. Sagnes, J. Bloch, A. Amo. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics, 11, 651-656(2017).

    [31] W. Liu, Z. Ji, Y. Wang, G. Modi, M. Hwang, B. Zheng, V. J. Sorger, A. Pan, R. Agarwal. Generation of helical topological exciton-polaritons. Science, 370, 600-604(2020).

    [32] M. Li, I. Sinev, F. Benimetskiy, T. Ivanova, E. Khestanova, S. Kiriushechkina, A. Vakulenko, S. Guddala, M. Skolnick, V. Menon, D. Krizhanovskii, A. Alù, A. Samusev, A. B. Khanikaev. Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nat. Commun., 12, 4425(2021).

    [33] Q. He, S. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [34] X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack, A. B. Khanikaev. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater., 15, 542-548(2016).

    [35] M. Goryachev, M. E. Tobar. Reconfigurable microwave photonic topological insulator. Phys. Rev. Appl., 6, 064006(2016).

    [36] M. I. Shalaev, S. Desnavi, W. Walasik, N. M. Litchinitser. Reconfigurable topological photonic crystal. New J. Phys., 20, 023040(2018).

    [37] Y. Wang, W. Zhang, X. Zhang. Tunable topological valley transport in two-dimensional photonic crystals. New J. Phys., 21, 093020(2019).

    [38] T. Cao, L. Fang, Y. Cao, N. Li, Z. Fan, Z. Tao. Dynamically reconfigurable topological edge state in phase change photonic crystals. Sci. Bull., 64, 814-822(2019).

    [39] M. I. Shalaev, W. Walasik, N. M. Litchinitser. Optically tunable topological photonic crystal. Optica, 6, 839-844(2019).

    [40] J. Wang, Y. Liu, D. Yang, Z. Hu, X. Zhang, S. Xia, J. Xu. Tunable terahertz topological edge and corner states in designer surface plasmon crystals. Opt. Express, 29, 19531-19539(2021).

    [41] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari. Graphene photonics and optoelectronics. Nat. Photonics, 4, 611-622(2010).

    [42] Z. Song, H. Liu, N. Huang, Z. Wang. Electrically tunable robust edge states in graphene-based topological photonic crystal slabs. J. Phys. D, 51, 095108(2018).

    [43] M. A. Gorlach, X. Ni, D. A. Smirnova, D. Korobkin, D. Zhirihin, A. P. Slobozhanyuk, P. A. Belov, A. Alù, A. B. Khanikaev. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun., 9, 909(2018).

    [44] D. Smirnova, S. Kruk, D. Leykam, E. Melik-Gaykazyan, D. Y. Choi, Y. Kivshar. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett., 123, 103901(2019).

    [45] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [46] S. Jahani, Z. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 11, 23-36(2016).

    [47] K. Ohtani, B. Meng, M. Franckié, L. Bosco, C. Ndebeka-Bandou, M. Beck, J. Faist. An electrically pumped phonon-polariton laser. Sci. Adv., 5, eaau1632(2019).

    [48] X. Song, S. A. Dereshgi, E. Palacios, Y. Xiang, K. Aydin. Enhanced interaction of optical phonons in h-BN with plasmonic lattice and cavity modes. ACS Appl. Mater. Interfaces, 13, 25224-25233(2021).

    [49] M. Barra-Burillo, U. Muniain, S. Catalano, F. Casanova, L. E. Hueso, J. Aizpurua, R. Esteban, R. Hillenbrand. Microcavity phonon polaritons from weak to ultrastrong phonon-photon coupling(2021).

    [50] J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, O. J. Glembocki. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics, 4, 44-68(2015).

    [51] D. Sanvitto, S. Kéna-Cohen. The road towards polaritonic devices. Nat. Mater., 15, 1061-1073(2016).

    [52] S. Guddala, F. Komissarenko, S. Kiriushechkina, A. Vakulenko, M. Li, V. M. Menon, A. B. Khanikaev. Topological phonon-polariton funneling in midinfrared metasurfaces. Science, 374, 225-227(2021).

    [53] E. D. Palik. Handbook of Optical Constants of Solids, 3(1998).

    [54] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Molding the Flow of Light(2008).

    [55] S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, L. A. Kolodziejski. Guided modes in photonic crystal slabs. Phys. Rev. B, 60, 5751-5758(1999).

    [56] R. Gansch, S. Kalchmair, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, G. Strasser. Higher order modes in photonic crystal slabs. Opt. Express, 19, 15990-15995(2011).

    [57] H. Y. Ryu, J. K. Hwang, Y. H. Lee. Conditions of single guided mode in two-dimensional triangular photonic crystal slab waveguides. J. Appl. Phys., 88, 4941-4946(2000).

    [58] L. C. Andreani, M. Agio. Photonic bands and gap maps in a photonic crystal slab. IEEE J. Quantum Electron., 38, 891-898(2002).

    [59] Z. Zhang, J. W. You, Z. Lan, N. C. Panoiu. Lattice topological edge and corner modes of photonic crystal slabs. J. Opt., 23, 095102(2021).

    [60] M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [61] N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, N. I. Zheludev. Coherent and incoherent metamaterials and order-disorder transitions. Phys. Rev. B, 80, 041102(2009).

    [62] V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, N. I. Zheludev. Spectral collapse in ensembles of metamolecules. Phys. Rev. Lett., 104, 223901(2010).

    [63] F. Xie, W. Wu, M. Ren, W. Cai, J. Xu. Lattice collective interaction engineered optical activity in metamaterials. Adv. Opt. Mater., 8, 1901435(2020).

    [64] N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov. Lasing spaser. Nat. Photonics, 2, 351-354(2008).

    [65] N. Rivera, T. Christensen, P. Narang. Phonon polaritonics in two-dimensional materials. Nano Lett., 19, 2653-2660(2019).

    [66] N. Li, X. Guo, X. Yang, R. Qi, T. Qiao, Y. Li, R. Shi, Y. Li, K. Liu, Z. Xu, L. Liu, F. Javier García de Abajo, Q. Dai, E. G. Wang, P. Gao. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater., 20, 43-48(2021).

    [67] A. J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C. T. Ellis, N. Assefa, I. Chatzakis, T. L. Reinecke, J. G. Tischler, M. M. Fogler, J. H. Edgar, D. N. Basov, J. D. Caldwell. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater., 17, 134-139(2018).

    [68] E. S. H. Kang, S. Chen, S. Sardar, D. Tordera, N. Armakavicius, V. Darakchieva, T. Shegai, M. P. Jonsson. Strong plasmon–exciton coupling with directional absorption features in optically thin hybrid nanohole metasurfaces. ACS Photon., 5, 4046-4055(2018).

    [69] L. Novotny. Strong coupling, energy splitting, and level crossings: a classical perspective. Am. J. Phys., 78, 1199-1202(2020).

    [70] M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, R. Hillenbrand. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl., 7, 17172(2018).

    [71] A. Bylinkin, M. Schnell, M. Autore, F. Calavalle, P. Li, J. Taboada-Gutièrrez, S. Liu, J. H. Edgar, F. Casanova, L. E. Hueso, P. Alonso-Gonzalez, A. Y. Nikitin, R. Hillenbrand. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photonics, 15, 197-202(2021).

    [72] M. Qin, S. Xiao, W. Liu, M. Ouyang, T. Yu, T. Wang, Q. Liao. Strong coupling between excitons and magnetic dipole quasi-bound states in the continuum in WS2-TiO2 hybrid metasurfaces. Opt. Express, 29, 18026-18036(2021).

    [73] T. Low, P. Avouris. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 8, 1086-1101(2014).

    [74] A. Andryieuski, A. V. Lavrinenko. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt. Express, 21, 9144-9155(2013).

    [75] C. Zhang, L. Liang, L. Ding, B. Jin, Y. Hou, C. Li, P. Wu. Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor. Appl. Phys. Lett., 108, 241105(2016).

    [76] S. X. Xia, X. Zhai, L. L. Wang, S. C. Wen. Plasmonically induced transparency in double-layered graphene nanoribbons. Photon. Res., 6, 692-702(2018).

    [77] M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, J. E. Bowers. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron., 19, 6100117(2012).

    [78] C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, M. R. Watts. Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 25, 7700108(2019).

    [79] Y. Lee, S. J. Kim, H. Park, B. Lee. Metamaterials and metasurfaces for sensor applications. Sensors, 17, 1726(2017).

    [80] T. Huang, X. Zhao, S. Zeng, A. Crunteanu, P. P. Shum, N. Yu. Planar nonlinear metasurface optics and their applications. Rep. Prog. Phys., 83, 126101(2020).

    [81] A. Cerjan, M. Jürgensen, W. A. Benalcazar, S. Mukherjee, M. C. Rechtsman. Observation of a higher-order topological bound state in the continuum. Phys. Rev. Lett., 125, 213901(2020).

    [82] Z. Hu, D. Bongiovanni, D. Jukić, E. Jajtić, S. Xia, D. Song, J. Xu, R. Morandotti, H. Buljan, Z. Chen. Nonlinear control of photonic higher-order topological bound states in the continuum. Light Sci. Appl., 10, 164(2021).

    [83] J. Zak. Berry’s phase for energy bands in solids. Phys. Rev. Lett., 62, 2747-2750(1989).

    [84] H. X. Wang, G. Y. Guo, J. H. Jiang. Band topology in classical waves: Wilson-loop approach to topological numbers and fragile topology. New J. Phys., 21, 093029(2019).

    Tools

    Get Citation

    Copy Citation Text

    Zhaojian Zhang, Junbo Yang, Te Du, Xinpeng Jiang. Topological multipolar corner state in a supercell metasurface and its interplay with two-dimensional materials[J]. Photonics Research, 2022, 10(4): 855

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Sep. 14, 2021

    Accepted: Feb. 1, 2022

    Published Online: Mar. 4, 2022

    The Author Email: Junbo Yang (yangjunbo@nudt.edu.cn)

    DOI:10.1364/PRJ.443025

    Topics