Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 924(2024)

Research Progress on Transparent Ferroelectric Ceramics

WANG Yaqi... SHI Guoqing, FU Dashi, XIONG Zixiang, LIU Jianyi, QIN Yalin* and ZHANG Yongcheng |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(127)

    [1] [1] LI F, ZHANG S J, XU Z, et al. Critical property in relaxor-PbTiO3 single crystals-shear piezoelectric response[J]. Adv Funct Mater, 2011, 21(11): 2118-2128.

    [2] [2] ZHANG S J, LI F, JIANG X N, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-A review[J]. Prog Mater Sci, 2015, 68: 1-66.

    [3] [3] LI K, SUN E W, ZHANG Y C, et al. High piezoelectricity of Eu3+-doped Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 transparent ceramics[J]. J Mater Chem C, 2021, 9(7): 2426-2436.

    [4] [4] DINESH KUMAR S, GUPTA S, SWAIN A B, et al. Large converse magnetoelectric effect in Sm doped Pb(Mg1/3Nb2/3)-PbTiO3 and NiFe2O4 laminate composite[J]. J Alloys Compd, 2021, 858: 157684.

    [5] [5] MARTIN L W, RAPPE A M. Thin-film ferroelectric materials and their applications[J]. Nat Rev Mater, 2016, 2(2): 16087.

    [6] [6] NING Y T, PU Y P, WU C H, et al. Enhanced capacitive energy storage and dielectric temperature stability of A-site disordered high-entropy perovskite oxides[J]. J Mater Sci Technol, 2023, 145: 66-73.

    [7] [7] THEVENOT C, ROUXEL D, SUKUMARAN S, et al. Plasticized P(VDF-TrFE): A new flexible piezoelectric material with an easier polarization process, promising for biomedical applications[J]. J Appl Polym Sci, 2021, 138(20): 50420.

    [8] [8] YANG F, PAN Z B, LING Z Q, et al. Realizing high comprehensive energy storage performances of BNT-based ceramics for application in pulse power capacitors[J]. J Eur Ceram Soc, 2021, 41(4): 2548-2558.

    [9] [9] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.

    [10] [10] DAI Z H, LI D Y, ZHOU Z J, et al. A strategy for high performance of energy storage and transparency in KNN-based ferroelectric ceramics[J]. Chem Eng J, 2022, 427: 131959.

    [11] [11] CAI L T, KANG Y, HU H. Electric?optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film[J]. Opt Express, 2016, 24(5): 4640-4647.

    [12] [12] DE GREVE K, YU L, MCMAHON P L, et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength[J]. Nature, 2012, 491(7424): 421-425.

    [13] [13] JIA Q N, ZHANG Q W, SUN H Q, et al. High transmittance and optical storage behaviors in Tb3+ doped K0.5Na0.5NbO3-based ferroelectric materials[J]. J Eur Ceram Soc, 2021, 41(2): 1211-1220.

    [14] [14] CHEN H Y, MIRG S, OSMAN M, et al. A high sensitivity transparent ultrasound transducer based on PMN-PT for ultrasound and photoacoustic imaging[J]. IEEE Sens Lett, 2021, 5(11): 1-4.

    [15] [15] CHEN X Y, CHEN R M, CHEN Z Y, et al. Transparent lead lanthanum zirconate titanate (PLZT) ceramic fibers for high-frequency ultrasonic transducer applications[J]. Ceram Int, 2016, 42(16): 18554-18559.

    [16] [16] GAO X Y, QIAO L A, QIU C R, et al. A robust, low-voltage driven millirobot based on transparent ferroelectric crystals[J]. Appl Phys Lett, 2022, 120(3): 032902.

    [17] [17] NIEDERHAUSER J J, JAEGER M, HEJAZI M, et al. Transparent ITO coated PVDF transducer for optoacoustic depth profiling[J]. Opt Commun, 2005, 253(4/6): 401-406.

    [18] [18] PARK B, HAN M, PARK J, et al. A photoacoustic finder fully integrated with a solid-state dye laser and transparent ultrasound transducer[J]. Photoacoustics, 2021, 23: 100290.

    [19] [19] THALHAMMER G, MCDOUGALL C, MACDONALD M P, et al. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging[J]. Lab Chip, 2016, 16(8): 1523-1532.

    [20] [20] Tshering C, Tshering D. Renewable mobile charger using piezoelectric transducer[J]. Res J Rec Sci, 2018, 7(8): 20-23.

    [21] [21] WANG L V. Multiscale photoacoustic microscopy and computed tomography[J]. Nat Photonics, 2009, 3(9): 503-509.

    [22] [22] DANGI A, AGRAWAL S, KOTHAPALLI S R. Lithium niobate-based transparent ultrasound transducers for photoacoustic imaging[J]. Opt Lett, 2019, 44(21): 5326-5329.

    [23] [23] MIRG S, CHEN H Y, TURNER K L, et al. Awake mouse brain photoacoustic and optical imaging through a transparent ultrasound cranial window[J]. Opt Lett, 2022, 47(5): 1121-1124.

    [24] [24] LIU Y H, LIN F S, CHEN L X, et al. Wearable transparent PVDF transducer for photoacoustic imager in body sensor network[C]//2020 IEEE International Ultrasonics Symposium (IUS). Las Vegas, NV, USA. IEEE, 2020: 1-3.

    [25] [25] CHILES J, FATHPOUR S. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics[J]. Optica, 2014, 1(5): 350.

    [26] [26] LIU X, TAN P, MA X, et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches[J]. Science, 2022, 376(6591): 371-377.

    [27] [27] YANG Z T, DU H L, JIN L, et al. High-performance lead-free bulk ceramics for electrical energy storage applications: Design strategies and challenges[J]. J Mater Chem A, 2021, 9(34): 18026-18085.

    [28] [28] YANG Z T, DU H L, QU S B, et al. Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics[J]. J Mater Chem A, 2016, 4(36): 13778-13785.

    [29] [29] CHAI Q Z, ZHANG F D, ZHOU Q Y, et al. Superior energy storage properties and optical transparency in K0.5Na0.5NbO3-based dielectric ceramics via multiple synergistic strategies[J]. Small, 2023, 19(19): e2207464.

    [30] [30] LV Z L, QIN Y L, ZHANG Y C, et al. Efficient upconversion photoluminescence in transparent Pr3+/Yb3+ co-doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 ferroelectric ceramics[J]. Ceram Int, 2019, 45(8): 10924-10929.

    [31] [31] HAO J H, ZHANG Y, WEI X H. Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3: Yb/Er thin films[J]. Angew Chem Int Ed Engl, 2011, 50(30): 6876-6880.

    [32] [32] WANG H Q, BATENTSCHUK M, OSVET A, et al. Rare-earth ion doped up-conversion materials for photovoltaic applications[J]. Adv Mater, 2011, 23(22-23): 2675-2680.

    [33] [33] WANG F, HAN Y, LIM C S, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping[J]. Nature, 2010, 463(7284): 1061-1065.

    [34] [34] ZHENG M, LI X Y, NI H, et al. Van der Waals epitaxy for highly tunable all-inorganic transparent flexible ferroelectric luminescent films[J]. J Mater Chem C, 2019, 7(27): 8310-8315.

    [35] [35] YU F Y, WANG P, LIN J F, et al. (K0.5Na0.5)NbO3-based photochromic transparent ceramics for high-security dynamic anti-counterfeiting and optical storage applications[J]. J Lumin, 2022, 252: 119345.

    [36] [36] LIN J F, ZHOU Y, LU Q L, et al. Reversible modulation of photoenergy in Sm-doped (K0.5Na0.5)NbO3 transparent ceramics via photochromic behavior[J]. J Mater Chem A, 2019, 7(33): 19374-19384.

    [37] [37] WANG Y Q, GUO P K, WANG Y N, et al. Enhancement of the photoluminescence modulation ratio in highly transparent KNN-based ceramics for optical information storage[J]. J Mater Chem C, 2023, 11(14): 4775-4783.

    [38] [38] WANG H J, LIN J F, DENG B Y, et al. Reversible multi-mode modulations of optical behavior in photochromic-translucent Nd-doped K0.5Na0.5NbO3 ceramics[J]. J Mater Chem C, 2020, 8(7): 2343-2352.

    [39] [39] WU X, YU F Y, XIONG R, et al. How to realize ultrahigh photochromic performance for real-time optical recording in transparent ceramics[J]. ACS Appl Mater Interfaces, 2023, 15(13): 16828-16841.

    [40] [40] UCHINO K. Electro-optic ceramics and their display applications[J]. Ceram Int, 1995, 21(5): 309-315.

    [41] [41] JIANG H, ZOU Y K, CHEN Q, et al. Transparent electro-optic ceramics and devices[C]//Photonics Asia. Proc SPIE 5644, Optoelectronic Devices and Integration, Beijing, China. 2005, 5644: 380-394.

    [42] [42] RUAN W, LI G R, ZENG J T, et al. Large electro-optic effect in La-doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 transparent ceramic by two-stage sintering[J]. J Am Ceram Soc, 2010, 93(8): 2128-2131.

    [43] [43] FANG Z, JIANG X D, TIAN X, et al. Ultratransparent PMN-PT electro-optic ceramics and its application in optical communication[J]. Adv Optical Mater, 2021, 9(13): 2002139.

    [44] [44] TIAN X, FANG Z, ZHENG F J, et al. Continuous control of polarization state and tunable dual-channel optical communication based on highly transparent PMN-PT electro-optic ceramics[J]. Ceram Int, 2023, 49(14): 23967-23974.

    [45] [45] HU M, CHANG Z C, NIE N, et al. La-doped PMN-PT transparent ceramics with ultra-high electro-optic effect and its application in optical devices[J]. J Adv Ceram, 2023, 12(7): 1441-1453.

    [46] [46] LIM B C, PHUA P B, LAI W J, et al. Fast switchable electro-optic radial polarization retarder[J]. Opt Lett, 2008, 33(9): 950-952.

    [47] [47] BADILLO F A L, EIRAS J, MILTON F P, et al. Preparation and microstructural, structural, optical and electro-optical properties of La doped PMN-PT transparent ceramics[J]. Opt Photonics J, 2012, 2(3): 157-162.

    [48] [48] FUJII I, YOSHIDA R, IMAI T, et al. Fabrication of transparent Pb(Mg1/3Nb2/3)O3-PbTiO3 based ceramics by conventional sintering[J]. J Am Ceram Soc, 2013, 96(12): 3782-3787.

    [49] [49] ZHANG X J, YE Q, QU R H, et al. High-power electro-optic switch technology based on novel transparent ceramic[J]. Chin Phys B, 2016, 25(3): 034202.

    [50] [50] QIAO L, YE Q, GAN J L, et al. Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch[J]. Opt Commun, 2011, 284(16/17): 3886-3890.

    [51] [51] JI W L, HE X Y, CHENG W X, et al. Effect of La content on dielectric, ferroelectric and electro-optic properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 transparent ceramics[J]. Ceram Int, 2015, 41(2): 1950-1956.

    [52] [52] FUJII I, NAKASHIMA S, WADA T. Fabrication and electro-optic properties of 0.9Pb[(Mg, Zn)1/3Nb2/3]O3-0.1PbTiO3 transparent ceramics by a conventional sintering technique[J]. Jpn J Appl Phys, 2017, 56(10S): 10PC04.

    [53] [53] JI W L, HE X Y, CHENG W X, et al. Influences of excess PbO on optical properties and microstructures of La modified 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 electro-optic transparent ceramics[J]. Mater Sci Forum, 2013, 745-746: 555-559.

    [54] [54] SONG Z Z, ZHANG Y C, LU C J, et al. Fabrication and ferroelectric/dielectric properties of La-doped PMN-PT ceramics with high optical transmittance[J]. Ceram Int, 2017, 43(4): 3720-3725.

    [55] [55] RUAN W, LI G R, ZENG J T, et al. Origin of the giant electro-optic Kerr effect in La-doped 75PMN-25PT transparent ceramics[J]. J Appl Phys, 2011, 110(7): 74109.

    [56] [56] LI C C, XU B, LIN D B, et al. Atomic-scale origin of ultrahigh piezoelectricity in samarium-doped PMN-PT ceramics[J]. Phys Rev B, 2020, 101(14): 140102.

    [57] [57] QIU C R, WANG B, ZHANG N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 2020, 577(7790): 350-354.

    [58] [58] CHENG Mingqiang. Preparation and properties of PMN-PT piezoelectric ceramics and transparent electro?optic ceramics modified by element doping[D]. Qingdao: Qingdao University, 2020.

    [59] [59] QIN Y L, YAN P K, HAN F X, et al. The piezoelectric properties of transparent 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3:Pr3+ ceramics[J]. J Alloys Compd, 2022, 891: 161959.

    [60] [60] YAN P K, QIN Y L, XU Z Y, et al. Highly transparent Eu-doped 0.72PMN-0.28PT ceramics with excellent piezoelectricity[J]. ACS Appl Mater Interfaces, 2021, 13(45): 54210-54216.

    [61] [61] ZHENG F J, TIAN X, FANG Z, et al. Sm-doped PIN-PMN-PT transparent ceramics with high curie temperature, good piezoelectricity, and excellent electro?optical properties[J]. ACS Appl Mater Interfaces, 2023, 15(5): 7053-7062.

    [62] [62] WEI Z H, TSUBOI T, NAKAI Y, et al. The synthesis of Er3+-doped PMN-PT transparent ceramic and its infrared luminescence[J]. Mater Lett, 2012, 68: 57-59.

    [63] [63] ZENG J T, WEI Z H, HUANG Y L, et al. NIR to visible up-conversion luminescence of Er3+-doped PMN-PT transparent ceramics[J]. J Am Ceram Soc, 2012, 95(8): 2573-2578.

    [64] [64] LIANG Z, PEI S H, QIN F, et al. Er3+ doped ferroelectric Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 ceramic used as a linear response fluorescent temperature sensor[J]. J Lumin, 2017, 181: 128-132.

    [65] [65] QIN Y L, HAN F X, YAN P K, et al. Fluorescence intensity ratio (FIR) analysis of the temperature sensing properties in transparent ferroelectric PMN-PT:Pr3+ ceramic[J]. Ceram Int, 2021, 47(17): 24092-24097.

    [66] [66] HAN Fuxuan. Preparation and properties of Dy doped PMN-PT multifunctional ceramics with transparent, piezoelectric and luminous properties[D]. Qingdao: Qingdao University, 2022.

    [67] [67] BI L N, FU J J, LV Z L, et al. Temperature-dependent upconversion luminescence in ferroelectric 1.5%Pr/3%Yb:0.75Pb(Mg1/3Nb2/3)O3- 0.25PbTiO3 transparent ceramics for non-contact thermometry and optical heating[J]. Ceram Int, 2020, 46(9): 13407-13413.

    [68] [68] YAO Y J, LUO L H, LI W P, et al. An intuitive method to probe phase structure by upconversion photoluminescence of Er3+ doped in ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3[J]. Appl Phys Lett, 2015, 106(8): 082906.

    [69] [69] ZHOU Y B, ZHAO K Y, RUAN W, et al. Electric field-induced light scattering in Eu-doped PMN-PT transparent ceramics[J]. J Am Ceram Soc, 2016, 99(12): 3993-3999.

    [70] [70] LIANG Z, SUN E W, LIU Z Y, et al. Electric field induced upconversion fluorescence enhancement and its mechanism in Er3+ doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 transparent ceramic[J]. Appl Phys Lett, 2016, 109(13): 132904.

    [71] [71] QU B Y, DU H L, YANG Z T. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability[J]. J Mater Chem C, 2016, 4(9): 1795-1803.

    [72] [72] KROUPA J, PETZELT J, MALIC B, et al. Electro-optic properties of KNN-STO lead-free ceramics[J]. J Phys D: Appl Phys, 2005, 38(5): 679-681.

    [73] [73] KWOK K W, LI F L, LIN D M. A novel lead-free transparent ceramic with high electro-optic coefficient[J]. Funct Mater Lett, 2011, 4(3): 237-240.

    [74] [74] GENG Z M, LI K, SHI D L, et al. Effect of Sr and Ba-doping in optical and electrical properties of KNN based transparent ceramics[J]. J Mater Sci Mater Electron, 2015, 26(9): 6769-6775.

    [75] [75] YANG D, MA C, YANG Z P, et al. Optical and electrical properties of pressureless sintered transparent (K0.37Na0.63)NbO3-based ceramics[J]. Ceram Int, 2016, 42(4): 4648-4657.

    [76] [76] ZHAO X M, CHAO X L, WU D, et al. Simultaneous realization of high transparency and piezoelectricity in low symmetry KNN-based ceramics[J]. J Am Ceram Soc, 2019, 102(6): 3498-3509.

    [77] [77] ZHAO X M, CHAI Q Z, CHEN B, et al. Improved transmittance and ferroelectric properties realized in KNN ceramics via SAN modification[J]. J Am Ceram Soc, 2018, 101(11): 5127-5137.

    [78] [78] REN X D, PENG Z H, CHEN B, et al. A compromise between piezoelectricity and transparency in KNN-based ceramics: The dual functions of Li2O addition[J]. J Eur Ceram Soc, 2020, 40(6): 2331-2337.

    [79] [79] LIN J F, WANG Y, XIONG R, et al. Tailoring micro-structure of eco-friendly temperature-insensitive transparent ceramics achieving superior piezoelectricity[J]. Acta Mater, 2022, 235: 118061.

    [80] [80] THONG H C, ZHAO C L, ZHOU Z, et al. Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics[J]. Mater Today, 2019, 29: 37-48.

    [81] [81] WU L J, TAN Z, ZHENG T, et al. KNN-Eu transparent ferroelectrics: local structure and luminescent property[J]. J Am Ceram Soc, 2023, 106(11): 6664-6674.

    [82] [82] WU X, LU S B, KWOK K W. Photoluminescence, electro-optic response and piezoelectric properties in pressureless-sintered Er-doped KNN-based transparent ceramics[J]. J Alloys Compd, 2017, 695: 3573-3578.

    [83] [83] TAO H, WU H J, LIU Y, et al. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence[J]. J Am Chem Soc, 2019, 141(35): 13987-13994.

    [84] [84] XU K, LI J, LV X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics[J]. Adv Mater, 2016, 28(38): 8519-8523.

    [85] [85] LV X, ZHU J G, XIAO D Q, et al. Emerging new phase boundary in potassium sodium-niobate based ceramics[J]. Chem Soc Rev, 2020, 49(3): 671-707.

    [86] [86] LV Y G, WANG C L, ZHANG J L, et al. Tantalum influence on physical properties of (K0.5Na0.5)(Nb1?xTax)O3 ceramics[J]. Mater Res Bull, 2009, 44(2): 284-287.

    [87] [87] MATSUURA Y, HIRANO T, SAKAI K. Friction torque reduction by ultrasonic vibration and its application to electromagnetically spinning viscometer[J]. Jpn J Appl Phys, 2014, 53(7S): 07KC12.

    [88] [88] REN P R, LIU Z C, WEI M Y, et al. Temperature-insensitive dielectric and piezoelectric properties in (1-x)K0.5Na0.5Nb0.997Cu0.0075O3-xSrZrO3 ceramics[J]. J Eur Ceram Soc, 2017, 37(5): 2091-2097.

    [89] [89] WANG R P, BANDO H, KIDATE M, et al. Effects of A-site ions on the phase transition temperatures and dielectric properties of (1-x)(Na0.5K0.5)NbO3-xAZrO3 solid solutions[J]. Jpn J Appl Phys, 2011, 50(9S2): 09ND10.

    [90] [90] WU B, WU H J, WU J G, et al. Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence[J]. J Am Chem Soc, 2016, 138(47): 15459-15464.

    [91] [91] ZUO R Z, FU J, LV D Y, et al. Antimony tuned rhombohedral- orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate[J]. J Am Ceram Soc, 2010, 93(9): 2783-2787.

    [92] [92] CHAI Q Z, YANG D, ZHAO X M, et al. Lead-free (K, Na)NbO3-based ceramics with high optical transparency and large energy storage ability[J]. J Am Ceram Soc, 2018, 101(6): 2321-2329.

    [93] [93] HOU J, DAI Z H, LIU C X, et al. Enhanced photoelectric properties for BiZn0.5Zr0.5O3 modified KNN-based lead-free ceramics[J]. J Alloys Compd, 2023, 960: 170639.

    [94] [94] LI C X, HUAN Y, WANG X Z, et al. Amelioration on energy storage performance of KNN-based transparent ceramics by optimizing the polarization and breakdown strength[J]. J Am Ceram Soc, 2022, 105(14): 6158-6167.

    [95] [95] LIN J F, GE G L, ZHU K, et al. Simultaneously achieving high performance of energy storage and transparency via A-site non-stoichiometric defect engineering in KNN-based ceramics[J]. Chem Eng J, 2022, 444: 136538.

    [96] [96] PENG X W, YANG B, DENG D J, et al. Lead-free KNN-based ceramics incorporated with Bi(Zn2/3Nb1/3)O3 possessing excellent optical transmittance and superior energy storage density[J]. Mater Res Bull, 2023, 165: 112294.

    [97] [97] REN X D, JIN L, PENG Z H, et al. Regulation of energy density and efficiency in transparent ceramics by grain refinement[J]. Chem Eng J, 2020, 390: 124566.

    [98] [98] WU H T, SHI S Y, LIU X, et al. The Ba(Bi0.5Ta0.5)O3 modified (K0.5Na0.5)NbO3 lead-free transparent ferroelectric ceramics with high transmittance and excellent energy storage performance[J]. J Mater Sci Mater Electron, 2022, 33(20): 16045-16055.

    [99] [99] XING J, HUANG Y L, WU B, et al. Energy storage behavior in ErBiO3-doped (K, Na)NbO3 lead-free piezoelectric ceramics[J]. ACS Appl Electron Mater, 2020, 2(11): 3717-3727.

    [100] [100] XING J, HUANG Y L, XU Q, et al. Realizing high comprehensive energy storage and ultrahigh hardness in lead-free ceramics[J]. ACS Appl Mater Interfaces, 2021, 13(24): 28472-28483.

    [101] [101] ZHANG M, YANG H B, LI D, et al. Excellent energy density and power density achieved in K0.5Na0.5NbO3-based ceramics with high optical transparency[J]. J Alloys Compd, 2020, 829: 154565.

    [102] [102] LIN C, WANG H J, WANG P, et al. Smart white lighting and multi-mode optical modulations via photochromism in Dy-doped KNN-based transparent ceramics[J]. J Am Ceram Soc, 2021, 104(2): 903-916.

    [103] [103] JIA Q N, ZHANG Q W, SUN H Q, et al. Multicolor and multimode luminescent modulation via energy transfer engineering in Tb3+/Eu3+ co-doped (K0.5Na0.5)NbO3 transparent photochromic materials[J]. J Alloys Compd, 2021, 873: 159852.

    [104] [104] LIN J F, WANG P, WANG H J, et al. Significantly photo- thermochromic KNN-based “smart window” for sustainable optical data storage and anti-counterfeiting[J]. Adv Opt Mater, 2021, 9(17): 2100580.

    [105] [105] LIN J F, ZHAI J W, WU X A, et al. Simultaneously improved transparency, photochromic contrast and Curie temperature via rare-earth ion modification in KNN-based ceramics[J]. Inorg Chem Front, 2021, 8(8): 2027-2035.

    [106] [106] LIN J F, ZHAI J W, WU X A, et al. Expedient red emitting and transparency dual modulation in KNN-based transparent ceramics via sensitive photothermochromic behavior[J]. ACS Appl Electron Mater, 2021, 3(3): 1394-1402.

    [107] [107] YU F Y, CHI Y, WANG P, et al. Highly responsive photochromic behavior with large coloration contrast in Ba/Sm co-doped (K0.5Na0.5)NbO3 transparent ceramics[J]. Ceram Int, 2022, 48(13): 18899-18908.

    [108] [108] LI F L, KWOK K W. Fabrication of transparent electro-optic (K0.5Na0.5)1?xLixNb1?xBixO3 lead-free ceramics[J]. J Eur Ceram Soc, 2013, 33(1): 123-130.

    [109] [109] LI F L, KWOK K W. K0.5Na0.5NbO3-based lead-free transparent electro?optic ceramics prepared by pressureless sintering[J]. J Am Ceram Soc, 2013, 96(11): 3557-3562.

    [110] [110] LI K, LI F L, WANG Y, et al. Hot-pressed K0.48Na0.52Nb1?xBixO3 (x= 0.05-0.15) lead-free ceramics for electro-optic applications[J]. Mater Chem Phys, 2011, 131(1-2): 320-324.

    [111] [111] LIU Z Y, FAN H Q, PENG B L. Enhancement of optical transparency in Bi2O3-modified (K0.5Na0.5)0.9Sr0.1Nb0.9Ti0.1O3 ceramics for electro-optic applications[J]. J Mater Sci, 2015, 50(24): 7958-7966.

    [112] [112] FAN Huiqing. Optoelectron Technol Inf, 2004(1): 18-20.

    [113] [113] HUANG C, XU J M, FANG Z, et al. Effect of preparation process on properties of PLZT (9/65/35) transparent ceramics[J]. J Alloys Compd, 2017, 723: 602-610.

    [114] [114] CHEN Y J, SUN D Z, ZHU Y Y, et al. The effect of Sn4+ doping on the electrostrictive property of PLZT (9/65/35) transparent electro-optical ceramics[J]. Ceram Int, 2020, 46(5): 6738-6744.

    [115] [115] CHENG H J, HE X Y, ZENG X, et al. A novel vacuum/oxygen hot press sintering approach for the fabrication of transparent PLZT (7.4/70/30) ceramics[J]. Ceram Int, 2021, 47(7): 9620-9626.

    [116] [116] WU Y J, LI J, KIMURA R, et al. Effects of preparation conditions on the structural and optical properties of spark plasma-sintered PLZT (8/65/35) ceramics[J]. J Am Ceram Soc, 2005, 88(12): 3327-3331.

    [117] [117] MING X H, LIU F, CHEN Y, et al. Elasto-optic effect of lanthanum-modified lead zirconate-lead titanate transparent ceramics: Application in optical-stress sensors[J]. Adv Optical Mater, 2022, 10(20): 2201239.

    [118] [118] GAO M, YE Q, DONG Z R, et al. Beam steering of external cavity diode laser by an intracavity electro-optic ceramic deflector[J]. Chin Opt Lett, 2011, 9(8): 81406.

    [119] [119] WEI R, YANG B B, MING X H, et al. Measurement of electro-optical coefficients based on the Stokes vectors[J]. Measurement, 2021, 167: 108287.

    [120] [120] XIA B, HE X Y, SUN D Z, et al. The electrically controlled light scattering performances of PLZT transparent ceramics[J]. Ceram Int, 2015, 41: S246-S249.

    [121] [121] DE CAMARGO A S S, DE O NUNES L A, SANTOS I A, et al. Structural and spectroscopic properties of rare-earth (Nd3+, ?Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics[J]. J Appl Phys, 2004, 95(4): 2135-2140.

    [122] [122] DE CAMARGO A S S, POSSATTO J F, DE O NUNES L A, et al. Infrared to visible frequency upconversion temperature sensor based on Er3+-doped PLZT transparent ceramics[J]. Solid State Commun, 2006, 137(1/2): 1-5.

    [123] [123] FENG Z H, LIN L, WANG Z Z, et al. Low temperature sensing behavior of upconversion luminescence in Er3+/Yb3+ codoped PLZT transparent ceramic[J]. Opt Commun, 2017, 399: 40-44.

    [124] [124] WU Y J, WANG N, WU S Y, et al. Transparent barium strontium titanate ceramics prepared by spark plasma sintering[J]. J Am Ceram Soc, 2011, 94(5): 1343-1345.

    [125] [125] DUPUY A D, KODERA Y, GARAY J E. Unprecedented electro-optic performance in lead-free transparent ceramics[J]. Adv Mater, 2016, 28(36): 7970-7977.

    [126] [126] YAN K, CHEN X L, WANG F F, et al. Large piezoelectricity and high transparency in fine-grained BaTiO3 ceramics[J]. Appl Phys Lett, 2020, 116(8): 082902.

    [127] [127] LUO W X, WU M X, HAN Y F, et al. Enhanced optical transmittance and energy-storage performance in NaNbO3-modified Bi0.5Na0.5TiO3 ceramics[J]. J Am Ceram Soc, 2023, 106(8): 4723-4731.

    Tools

    Get Citation

    Copy Citation Text

    WANG Yaqi, SHI Guoqing, FU Dashi, XIONG Zixiang, LIU Jianyi, QIN Yalin, ZHANG Yongcheng. Research Progress on Transparent Ferroelectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 924

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 30, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: Yalin QIN (yalinqin@qdu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics