Laser Journal, Volume. 45, Issue 9, 26(2024)

Research on power transmission lines instance segmentation using mobile LiDAR scanning

XU Li1... LI Minglei1,*, LI Mingfan1, LI Wei2, WEI Dazhou2 and CHEN Guangyong2 |Show fewer author(s)
Author Affiliations
  • 1College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • 2China Institute of Aeronautical Radio Electronics, Shanghai 200233, China
  • show less
    References(13)

    [3] [3] Zhang R Z, Yang B S, Xiao W, et al. Automatic Extraction of High-Voltage Power Transmission Objects from UAV Lidar Point Clouds[J]. Remote Sensing, 2019, 11(22): 2600.

    [4] [4] Wen C C, Yang L N, Li X, et al. Directionally constrained fully convolutional neural network for airborne LiDAR point cloud classification[J]. ISPRS journal of photogrammetry and remote sensing, 2020, 162(1): 50-62.

    [5] [5] Guan H Y, Yu Y T, Li J H, et al. Extraction of power-transmission lines from vehicle-borne lidar data[J]. International Journal of Remote Sensing, 2016, 37(1): 229-247.

    [8] [8] Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30(1): arXiv. 1706.02413.

    [9] [9] Zhang J, Singh S. LOAM: Lidar odometry and mapping in real-time[C]//Robotics: Science and systems. Berkeley, California, USA: MIT Press, 2014: 1-9.

    [10] [10] Shan T X, Englot B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE Press, 2018: 4758-4765.

    [11] [11] Shan T X, Englot B, Meyers D, et al. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA: IEEE Press, 2020: 5135-5142.

    [13] [13] Xu W, Cai Y X, He D J, et al. Fast-lio2: Fast direct lidar-inertial odometry[J]. IEEE Transactions on Robotics, 2022, 38(4): 2053-2073.

    [14] [14] Roumeliotis S I, Sukhatme G S, Bekey G A. Circumventing dynamic modeling: evaluation of the error-state Kalman filter applied to mobile robot localization[C]//IEEE International Conference on Robotics & Automation, 2002: 1656-1663.

    [15] [15] Hu Q Y, Yang B, Xie L H, et al. Randla-Net: Efficient semantic segmentation of large-scale point clouds[J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 11105-11114.

    [16] [16] Groh F, Wieschollek P, Lensch H P. Flex-Convolution: Million-scale point-cloud learning beyond grid-worlds[C]//Asian Conference on Computer Vision: Springer, 2018: 105-122.

    [17] [17] Qi C R, Su H, Mo K C, et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[J]. CoRR, 2016.

    [18] [18] Thomas H, Qi C R, Deschaud J, et al. KPConv: Flexible and Deformable Convolution for Point Clouds[J]. CoRR, 2019.

    Tools

    Get Citation

    Copy Citation Text

    XU Li, LI Minglei, LI Mingfan, LI Wei, WEI Dazhou, CHEN Guangyong. Research on power transmission lines instance segmentation using mobile LiDAR scanning[J]. Laser Journal, 2024, 45(9): 26

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 23, 2024

    Accepted: Dec. 20, 2024

    Published Online: Dec. 20, 2024

    The Author Email: Minglei LI (minglei_li@nuaa.edu.cn)

    DOI:10.14016/j.cnki.jgzz.2024.09.026

    Topics