Laser Journal, Volume. 45, Issue 9, 26(2024)
Research on power transmission lines instance segmentation using mobile LiDAR scanning
[3] [3] Zhang R Z, Yang B S, Xiao W, et al. Automatic Extraction of High-Voltage Power Transmission Objects from UAV Lidar Point Clouds[J]. Remote Sensing, 2019, 11(22): 2600.
[4] [4] Wen C C, Yang L N, Li X, et al. Directionally constrained fully convolutional neural network for airborne LiDAR point cloud classification[J]. ISPRS journal of photogrammetry and remote sensing, 2020, 162(1): 50-62.
[5] [5] Guan H Y, Yu Y T, Li J H, et al. Extraction of power-transmission lines from vehicle-borne lidar data[J]. International Journal of Remote Sensing, 2016, 37(1): 229-247.
[8] [8] Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30(1): arXiv. 1706.02413.
[9] [9] Zhang J, Singh S. LOAM: Lidar odometry and mapping in real-time[C]//Robotics: Science and systems. Berkeley, California, USA: MIT Press, 2014: 1-9.
[10] [10] Shan T X, Englot B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE Press, 2018: 4758-4765.
[11] [11] Shan T X, Englot B, Meyers D, et al. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA: IEEE Press, 2020: 5135-5142.
[13] [13] Xu W, Cai Y X, He D J, et al. Fast-lio2: Fast direct lidar-inertial odometry[J]. IEEE Transactions on Robotics, 2022, 38(4): 2053-2073.
[14] [14] Roumeliotis S I, Sukhatme G S, Bekey G A. Circumventing dynamic modeling: evaluation of the error-state Kalman filter applied to mobile robot localization[C]//IEEE International Conference on Robotics & Automation, 2002: 1656-1663.
[15] [15] Hu Q Y, Yang B, Xie L H, et al. Randla-Net: Efficient semantic segmentation of large-scale point clouds[J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 11105-11114.
[16] [16] Groh F, Wieschollek P, Lensch H P. Flex-Convolution: Million-scale point-cloud learning beyond grid-worlds[C]//Asian Conference on Computer Vision: Springer, 2018: 105-122.
[17] [17] Qi C R, Su H, Mo K C, et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[J]. CoRR, 2016.
[18] [18] Thomas H, Qi C R, Deschaud J, et al. KPConv: Flexible and Deformable Convolution for Point Clouds[J]. CoRR, 2019.
Get Citation
Copy Citation Text
XU Li, LI Minglei, LI Mingfan, LI Wei, WEI Dazhou, CHEN Guangyong. Research on power transmission lines instance segmentation using mobile LiDAR scanning[J]. Laser Journal, 2024, 45(9): 26
Category:
Received: Feb. 23, 2024
Accepted: Dec. 20, 2024
Published Online: Dec. 20, 2024
The Author Email: Minglei LI (minglei_li@nuaa.edu.cn)