Chinese Journal of Quantum Electronics, Volume. 41, Issue 5, 738(2024)
A method to solve lack of paired data in neutron computed tomography for deep learning by using photon images
Fig. 1. Unsupervised deep reconstruction network composed of encoder, decoder and migration unit
Fig. 2. Images of the experiment sample. (a) Sample perspection of 0°; (b) Sample perspection of 90°;(c) A perspective of the sample
Fig. 3. Reconstruction cross section of neutron CT and photon CT. (a) Neutron CT image;(b) Low-dose photon CT image; (c) Normal-dose photon CT image
Fig. 5. Reconstruction results of the simple structure cross-section of 60% dose neutron CT images by six reconstruction methods. (a) FBP; (b) SART; (c) MDAM; (d) DnCNN; (e) FBPConvNet; (f) REDCNN (a) FBP; (b) SART; (c) MDAM; (d) DnCNN; (e) FBPConvNet; (f) REDCNN
Fig. 6. Local details of the reconstruction of simple structure cross sections of 60% dose neutron CT images by six reconstruction methods. (a) FBP; (b) SART; (c) MDAM; (d) DnCNN; (e) FBPConvNet; (f) REDCNN (a) FBP; (b) SART; (c) MDAM; (d) DnCNN; (e) FBPConvNet; (f) REDCNN
Fig. 7. Local details of the reconstruction of complex structure cross sections of 60% dose neutron CT images by six reconstruction methods. (a) FBP; (b) SART; (c) MDAM; (d) DnCNN; (e) FBPConvNet; (f) REDCNN (a) FBP; (b) SART; (c) MDAM; (d) DnCNN; (e) FBPConvNet; (f) REDCNN
Fig. 8. Reconstruction results of two kinds of structure cross sections of 60% dose neutron CT images by MDAM_skip.(a) Simple structure cross section; (b) Complex structure cross section
Fig. 9. Reconstruction results of two structural cross sections of 40% dose neutron CT images by three reconstruction methods. (a)(d) FBP; (b)(e) SART; (c)(f) MDAM
|
Get Citation
Copy Citation Text
Hu GUO, Shuai CHEN, Minghan YANG, Ziheng ZHANG, Hui SHAO, Jianye WANG. A method to solve lack of paired data in neutron computed tomography for deep learning by using photon images[J]. Chinese Journal of Quantum Electronics, 2024, 41(5): 738
Category:
Received: Nov. 22, 2022
Accepted: --
Published Online: Jan. 8, 2025
The Author Email: CHEN Shuai (shuai.chen@inest.cas.cn)