Semiconductor Optoelectronics, Volume. 45, Issue 5, 786(2024)
Dynamic Properties of Current-driven RKKY-coupled Skyrmion
[1] [1] Fert A, Cros V, Sampaio J. Skyrmions on the track[J]. Nat. Nanotechnol., 2013, 8(3): 030152.
[2] [2] Finocchio G, Bttner F, Tomasello R, et al. Magnetic Skyrmions: From fundamental to applications[J]. J. Phys. D: Appl. Phys., 2016, 49(4): 040023.
[3] [3] Fert A, Reyren N, Cros V. Magnetic Skyrmions: Advances in physics and potential applications[J]. Nat. Rev. Mater., 2017, 2(7): 17031.
[4] [4] Sampaio J, Cros V, Rohart S, et al. Nucleation, stability and current-induced motion of isolated magnetic Skyrmions in nanostructures[J]. Nat. Nanotechnol., 2013, 8(11): 839-844.
[5] [5] Jiang W, Zhang X, Yu G, et al. Direct observation of the Skyrmion Hall effect[J]. Nat. Phys., 2017, 13(2): 162-169.
[6] [6] Barker J, Tretiakov O A. Static and dynamical properties of antiferromagnetic Skyrmions in the presence of applied current and temperature[J]. Phys. Rev. Lett., 2016, 116(14): 147203.
[7] [7] Castro M A, Allende S. Skyrmion core size dependence as a function of the perpendicular anisotropy and radius in magnetic nanodots[J]. J. Magn. Magn. Mater., 2016, 417: 344-348.
[8] [8] Garcia-Sanchez F, Sampaio J, Reyren N, et al. A Skyrmion-based spin-torque nano-oscillator[J]. New J. Phys., 2016, 18(7): 075011.
[9] [9] Sutcliffe P. Skyrmions, instantons and holography[J]. J. High Energy Phys., 2010, 2010(8): 1-25.
[10] [10] Zhang Senfu, Wang Jianbo, Zheng Qiyuan, et al. Current-induced magnetic Skyrmions oscillator[J]. New J. Phys., 2015, 17(2): 023061.
[11] [11] Zhu Mingmin, Cui Shuting, Xu Xiaofei, et al. Voltage-controllable magnetic Skyrmion dynamics for spiking neuron device applications[J]. Chin. Phys. B, 2022, 31(1): 018503.
[12] [12] Thiele A A. Steady-state motion of magnetic domains[J]. Phys. Rev. Lett., 1973, 30(6): 230-233.
[13] [13] Castro S J. Current-driven excitation of magnetic multilayers[J]. J. Magn. Magn. Mater., 1996, 159(1): 1-7.
[14] [14] Brown W F, Labonte A E. Structure and energy of one-dimensional domain walls in ferromagnetic thin films[J]. J. Appl. Phys., 1965, 36(4): 1380-1386.
[15] [15] Landau L D, Lifshitz E M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[J]. Phys. Zeitsch. der Sow., 1935, 8(2): 153-164.
[17] [17] Thonig D, Henk J. Gilbert damping tensor within the breathing Fermi surface model: anisotropy and non-locality[J]. New J. Phys., 2014, 16(1): 013032.
[18] [18] Mcmichael R D, Stiles M D. Magnetic normal modes of nanoelements[J]. J. Appl. Phys., 2005, 97(10): 100901.
[19] [19] Tejo F, Velozo F, Elias R G, et al. Oscillations of Skyrmion clusters in Co/Pt multilayer nanodots[J]. Sci. Rep., 2020, 10(1): 016517.
[20] [20] Chakrabartty D, Jamaluddin S, Manna S K, et al. Tunable room temperature magnetic Skyrmions in centrosymmetric kagome magnet Mn4Ga2Sn [J]. Commun. Phys., 2022, 5(1): 010189.
[21] [21] Chauwin M, Hu X, Garcia-Sanchez F, et al. Skyrmion logic system for large-scale reversible computation[J]. Phys. Rev. Appl., 2019, 12(6): 064053.
[22] [22] Siracusano G, Tomasello R, Giordano A, et al. Magnetic radial vortex stabilization and efficient manipulation driven by the Dzyaloshinskii-Moriya interaction and spin-transfer torque[J]. Phys. Rev. Lett., 2016, 117(8): 087204.
[23] [23] Power S R, Ferreira M S. Indirect exchange and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions in magnetically-doped graphene[J]. Crystals, 2013, 3(1): 49-78.
[24] [24] Fritz L, Vojta M. The physics of Kondo impurities in graphene[J]. Rep. Prog. Phys., 2013, 76(3): 032501.
[25] [25] Klinovaja J, Loss D. RKKY interaction in carbon nanotubes and graphene nanoribbons[J]. Phys. Rev. B, 2013, 87(4): 045422.
Get Citation
Copy Citation Text
JIA Shuaifan, LU Wenkui, CHEN Lin, TAO Zhikuo. Dynamic Properties of Current-driven RKKY-coupled Skyrmion[J]. Semiconductor Optoelectronics, 2024, 45(5): 786
Category:
Received: May. 17, 2024
Accepted: Feb. 13, 2025
Published Online: Feb. 13, 2025
The Author Email: