Acta Physica Sinica, Volume. 69, Issue 1, 010303-1(2020)
Fig. 1. Optical trapping of 23Na condensates in all
Fig. 2. Absorptive image of Rb atomic cloud after 10 ms free expansion in a Stern-Gerlach magnetic field gradient. Three distinct components are observed corresponding to
Fig. 3. The pseudospin density distribution for (a)
Fig. 4. Approximate half-quantum vortex solution in the spin-1 BEC and the corresponding singular spin texture: (a) and (b) are the densities of the
和
components, respectively; (c) and (d) are the corresponding phases; (e) shows the profile of the half-quantum vortex; (f) spin density|
Fig. 5. Two common vector field configurations of two-dimensional skyrmions: (a) The hedgehog type skyrmion; (b) the spiral type skyrmion.两种常见的二维skyrmions的矢量场构型[79] (a) 豪猪型skyrmion; (b) 螺旋型skyrmion
Fig. 6. The spatial profile of the stable 3D skyrmions in the
Fig. 7. Dynamics of the creation of knots in a spherical optical trap under a quadrupole magnetic field. Snapshots of the preimages of
= (0, 0, –1) T and
= (1, 0, 0)T(top), and the cross sections of the density for the
Fig. 8. Structure of the knot soliton and the method of its creation: Schematic magnetic field lines before (a) and during (b) the knot formation, with respect to the condensate (green ellipse); (c), (d) as the knot is tied, the initially
Fig. 9. Configuration of the skyrmion where λ = 0.5: The (a)−(h) figures indicate the mode of the spin vectors: (a) radial-out skyrmion, (b) radial-in skyrmion, (c) circular skyrmion, (d) hyperbolic skyrmion, (e) hyperbolic-radial(out) skyrmion, (f) hyperbolic-radial (in) skyrmion, (g) circular-hyperbolic skyrmion-I, and (h) circular-hyperbolic skyrmion-II[99]. Skyrmions的类型(λ = 0.5)[99] (a)−(h)表示自旋矢量的模式: (a)径向-向外skyrmion, (b)径向-向内skyrmion, (c)环形skyrmion, (d)双曲skyrmion, (e)双曲-径向向外skyrmion, (f)双曲-径向向内skyrmion, (g)环形-双曲skyrmion-I, (h)环形-双曲skyrmion-II
Fig. 10. Particle number densities (the first and second columns) and phase distributions (the third and fourth columns) of ground state of the two-component BEC of 87Rb for the different spin-orbit coupling strengths: the parameters of in (a)−(d) are 0, 0.2, 0.8, 2, respectively[107]. 不同自旋-轨道耦合强度下梯度磁场中两分量87RbBEC基态粒子数密度分布(第1、2列)和相位分布(第3、4列)[107] (a)−(d)的 值分别为0, 0.2, 0.8, 2
Fig. 12. Experimental creation of Dirac monopoles. Each row (a)−(f) contains images of an individual condensate. The leftmost column shows colour composite images of the column densities taken along the horizontal axis for the three spin states ; The rightmost three columns show images taken along the vertical axis[80]. 狄拉克磁单极子的实验产生[80] (a)−(f)每一行都包含单个凝聚体的图像. 最左边的列显示了三种自旋状态 沿水平轴的柱状密度彩色图像; 最右边三列显示沿纵轴拍摄的图像
Fig. 13. The effect of rotation frequency for spinor BEC of 23Na with
,
,
Fig. 14. The monopoles with the Mermin-Ho vortex: (a) Isosurface of particle densities; (b) segments of isosurface of particle densities (
|
Get Citation
Copy Citation Text
Li Wang, Jing-Si Liu, Ji Li, Xiao-Lin Zhou, Xiang-Rong Chen, Chao-Fei Liu, Wu-Ming Liu.
Received: Oct. 28, 2019
Accepted: --
Published Online: Nov. 4, 2020
The Author Email: Liu Wu-Ming (wmliu@iphy.ac.cn)