Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 1023(2024)

Application of Phosphor Ceramics with Lighting and Display

LING Junrong1...2, ZHOU Youfu1,2,*, and HONG Maochun12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(92)

    [1] [1] ZHAI B G, CHEN L L, LI M Y, et al. A survey of Ce3+ activated yttrium aluminum garnet phosphors[J]. Optoelectron. Mater, 2017, 2: 8-18.

    [2] [2] NAIR G B, SWART H C, DHOBLE S J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization[J]. Prog Mater Sci, 2020, 109: 100622.

    [3] [3] DU Q P, FENG S W, QIN H M, et al. Massive red-shifting of Ce3+ emission by Mg2+ and Si4+ doping of YAG:Ce transparent ceramic phosphors[J]. J Mater Chem C, 2018, 6(45): 12200-12205.

    [4] [4] ZHANG Y, LING J R, LI Y N, et al. Blue-green emitting LuASG:Ce phosphor ceramics with high luminous efficacy for high-power LEDs[J]. J Lumin, 2022, 247: 118886.

    [5] [5] LING J R, ZHANG Y, YANG J A, et al. A single-structured LuAG:Ce, Mn phosphor ceramics with high CRI for high-power white LEDs[J]. J Am Ceram Soc, 2022, 105(9): 5738-5750.

    [6] [6] LING J R, XU W T, YANG J, et al. The effect of Lu3+ doping upon YAG:Ce phosphor ceramics for high-power white LEDs[J]. J Eur Ceram Soc, 2021, 41(12): 5967-5976.

    [7] [7] HUA H, FENG S W, OUYANG Z Y, et al. YAGG:Ce transparent ceramics with high luminous efficiency for solid-state lighting application[J]. J Adv Ceram, 2019, 8(3): 389-398.

    [8] [8] MA Y L, ZHANG L, ZHOU T Y, et al. Weak thermal quenching and tunable luminescence in Ce:Y3(Al, Sc)5O12 transparent ceramics for high power white LEDs/LDs[J]. Chem Eng J, 2020, 398: 125486.

    [9] [9] MA Y L, ZHANG L, ZHOU T Y, et al. High quantum efficiency Ce:(Lu, Y)3(Al, Sc)2Al3O12 transparent ceramics with excellent thermal stability for high-power white LEDs/LDs[J]. J Mater Chem C, 2020, 8(46): 16427-16435.

    [10] [10] MA Y L, ZHANG L, ZHANG L, et al. Fabrication and optical properties of divalent Cu2+ ions incorporated Ce:YAG transparent ceramics for white LEDs[J]. Ceram Int, 2019, 45(4): 4817-4823.

    [11] [11] LEE M J, PARK S H, SONG Y H, et al. Fabrication of phosphor ceramic plate using green-emitting Lu3Al5O12:Ce3+ phosphor for high power LEDs[J]. Mater Lett, 2015, 161: 708-711.

    [12] [12] BIN KWON S, CHOI S H, YOO J H, et al. Fabrication of LuAG:Ce3+ ceramic phosphors prepared with nanophosphors synthesized by a sol-gel-combustion method[J]. Micromachines, 2022, 13(11): 2017.

    [13] [13] WANG Bo, WU Qiong, LIU Liqi, et al. Laser Technol, 2022, 46(1): 99-109.

    [14] [14] CHI Nan, WANG Chaofan, LI Weiping, et al. J Fudan Univ: Nat Sci, 2019, 58(5): 537-548.

    [15] [15] CHEN Qingxiang, XIONG Zhengye, TAN Zhongming, et al. South China Fish Sci, 2013, 9(3): 80-84.

    [16] [16] LI Yu, ZHENG Weibo, CUI Zhao. Hubei Agric Sci, 2017, 56(13): 2536-2539.

    [17] [17] LIU X, ZHOU H Y, HU Z W, et al. Transparent Ce:GdYAG ceramic color converters for high-brightness white LEDs and LDs[J]. Opt Mater, 2019, 88: 97-102.

    [18] [18] LEE J H, LI J G, KIM B N, et al. Effect of annealing on microstructure and luminescence characteristics in spark plasma sintered Ce3+-activated (Gd, Lu)3Al5O12 garnet ceramics[J]. J Eur Ceram Soc, 2021, 41(2): 1586-1592.

    [19] [19] SUN P, HU P, LIU Y F, et al. Broadband emissions from Lu2Mg2Al2Si2O12:Ce3+ plate ceramic phosphors enable a high color-rendering index for laser-driven lighting[J]. J Mater Chem C, 2020, 8(4): 1405-1412.

    [20] [20] XI X Q, ZHANG L, KANG J, et al. Chip-level Ce:GdYAG ceramic phosphors with excellent chromaticity parameters for high-brightness white LED device[J]. Opt Express, 2021, 29(8): 11938-11946.

    [21] [21] TIAN Y N, TANG Y R, YI X Z, et al. The analyses of structure and luminescence in (MgyY3-y)(Al5-ySiy)O12 and Y3(MgxAl5-2xSix)O12 ceramic phosphors[J]. J Alloys Compd, 2020, 813: 152236.

    [22] [22] LIU S, SUN P, LIU Y F, et al. Warm white light with a high color-rendering index from a single Gd3Al4GaO12:Ce3+ transparent ceramic for high-power LEDs and LDs[J]. ACS Appl Mater Interfaces, 2019, 11(2): 2130-2139.

    [23] [23] MA Y L, ZHANG L, HUANG J, et al. Broadband emission Gd3Sc2Al3O12:Ce3+ transparent ceramics with a high color rendering index for high-power white LEDs/LDs[J]. Opt Express, OE, 2021, 29(6): 9474-9493.

    [24] [24] CHEN J E, TANG Y R, YI X Z, et al. Fabrication of (Tb, Gd)3Al5O12:Ce3+ phosphor ceramics for warm white light-emitting diodes application[J]. Opt Mater Express, 2019, 9(8): 3333.

    [25] [25] TANG Y R, ZHOU S M, YI X Z, et al. The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics[J]. J Am Ceram Soc, 2017, 100(6): 2590-2595.

    [26] [26] TANG Y R, ZHOU S M, YI X Z, et al. The characterization of Ce/Pr-doped YAG phosphor ceramic for the white LEDs[J]. J Alloys Compd, 2018, 745: 84-89.

    [27] [27] FENG S W, QIN H M, WU G Q, et al. Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application[J]. J Eur Ceram Soc, 2017, 37(10): 3403-3409.

    [28] [28] LING J R, ZHOU Y F, XU W T, et al. Red-emitting YAG:Ce, Mn transparent ceramics for warm WLEDs application[J]. J Adv Ceram, 2020, 9(1): 45-54.

    [29] [29] WANG B, LING J R, ZHOU Y F, et al. YAG:Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs[J]. J Lumin, 2019, 213: 421-426.

    [30] [30] MA Y L, ZHANG L, ZHOU T Y, et al. High recorded color rendering index in single Ce, (Pr, Mn):YAG transparent ceramics for high-power white LEDs/LDs[J]. J Mater Chem C, 2020, 8(13): 4329-4337.

    [31] [31] LI Y K, LIU Y F, LUO Z H, et al. Ce/Mn/Cr:Y3Al5O12 phosphor ceramics for white LED and LD lighting with a high color rendering index[J]. Ceram Int, 2023, 49(15): 24703-24711.

    [32] [32] ZHOU T Y, HOU C, ZHANG L, et al. Efficient spectral regulation in Ce:Lu3(Al, Cr)5O12 and Ce:Lu3(Al, Cr)5O12/Ce:Y3Al5O12 transparent ceramics with high color rendering index for high-power white LEDs/LDs[J]. J Adv Ceram, 2021, 10(5): 1107-1118.

    [33] [33] SUN B H, JIANG B X, ZHANG L. Samarium and manganese incorporation to improve color rendering of LuAG:Ce3+ phosphor ceramics for laser-driven lighting: A Color-tunable and energy transfer study[J]. J Mater Chem C, 2021, 9(46): 16468-16476.

    [34] [34] YANG J Y, HAN T, CAO Y F, et al. Photoluminescent transparent ceramics with an adjustable spectrum for high-color rendering laser lighting[J]. J Mater Chem C, 2020, 8(46): 16483-16488.

    [35] [35] ZHAO C Y, DUAN Y T, LIN H, et al. Synthesis and luminescence properties of color-tunable Ce, Mn co-doped LuAG transparent ceramics by sintering under atmospheric pressure[J]. Ceram Int, 2021, 47(7): 9156-9163.

    [36] [36] LIU X, QIAN X L, ZHENG P, et al. Preparation and optical properties of MgAl2O4-Ce:GdYAG composite ceramic phosphors for white LEDs[J]. J Eur Ceram Soc, 2019, 39(15): 4965-4971.

    [37] [37] LI S X, ZHU Q Q, TANG D M, et al. Al2O3-YAG:Ce composite phosphor ceramic: A thermally robust and efficient color converter for solid state laser lighting[J]. J Mater Chem C, 2016, 4(37): 8648-8654.

    [38] [38] XU M, CHANG J, WANG J, et al. Al2O3-YAG:Ce composite ceramics for high-brightness lighting[J]. Opt Express, 2019, 27(2): 872.

    [39] [39] HU S, ZHANG Y L, WANG Z J, et al. Phase composition, microstructure and luminescent property evolutions in “light-scattering enhanced” Al2O3-Y3Al5O12:Ce3+ ceramic phosphors[J]. J Eur Ceram Soc, 2018, 38(9): 3268-3278.

    [40] [40] ZHAO H Y, LI Z, ZHANG M W, et al. High-performance Al2O3-YAG:Ce composite ceramic phosphors for miniaturization of high-brightness white light-emitting diodes[J]. Ceram Int, 2020, 46(1): 653-662.

    [41] [41] LIU X, QIAN X L, HU Z W, et al. Al2O3-Ce:GdYAG composite ceramic phosphors for high-power white light-emitting-diode applications[J]. J Eur Ceram Soc, 2019, 39(6): 2149-2154.

    [42] [42] ZHANG Q, ZHENG R L, DING J Y, et al. High lumen density of Al2O3-LuAG:Ce composite ceramic for high-brightness display[J]. J Am Ceram Soc, 2021, 104(7): 3260-3268.

    [43] [43] WANG J C, TANG X Y, ZHENG P, et al. Thermally self-managing YAG:Ce-Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration[J]. J Mater Chem C, 2019, 7(13): 3901-3908.

    [44] [44] LI X Y, CHEN J, LIU Z G, et al. (Ce, Gd):YAG-Al2O3 composite ceramics for high-brightness yellow light-emitting diode applications[J]. J Eur Ceram Soc, 2022, 42(3): 1121-1131.

    [45] [45] CHENG Z Q, LIU X, CHEN X R, et al. Composition and luminescence properties of highly robust green-emitting LuAG:Ce/Al2O3 composite phosphor ceramics for high-power solid-state lighting[J]. J Adv Ceram, 2023, 12(3): 625-633.

    [46] [46] ZHAO H Y, YU H Q, XU J, et al. Novel high-thermal-conductivity composite ceramic phosphors for high-brightness laser-driven lighting[J]. J Mater Chem C, 2021, 9(32): 10487-10496.

    [47] [47] TIAN Y N, CHEN J, YI X Z, et al. A new BaAl2O4-YAG:Ce composite ceramic phosphor for white LEDs and LDs lighting[J]. J Eur Ceram Soc, 2021, 41(7): 4343-4348.

    [48] [48] HUANG P, ZHOU B Y, ZHENG Q, et al. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG:Ce composite ceramics for high luminous efficiency white light-emitting diodes[J]. Adv Mater, 2020, 32(1): e1905951.

    [49] [49] GU C, WANG X J, XIA C, et al. A new CaF2-YAG:Ce composite phosphor ceramic for high-power and high-color-rendering WLEDs[J]. J Mater Chem C, 2019, 7(28): 8569-8574.

    [50] [50] PENG X L, LI S X, ZHANG B H, et al. Microstructure tailoring of red-emitting AlN-CaAlSiN3:Eu2+ composite phosphor ceramics with higher optical properties for laser lighting[J]. J Eur Ceram Soc, 2022, 42(7): 3339-3344.

    [51] [51] ZHOU Z H, LI X Y, HUANG Q F, et al. Effect of CaO additive on the densification of MgO and MgO-YGAG:Ce ceramics[J]. Ceram Int, 2023, 49(11): 17340-17347.

    [52] [52] XU J, WANG J, GONG Y X, et al. Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting[J]. J Eur Ceram Soc, 2018, 38(1): 343-347.

    [53] [53] ZHANG Y L, HU S, WANG Z J, et al. Pore-existing Lu3Al5O12:Ce ceramic phosphor: An efficient green color converter for laser light source[J]. J Lumin, 2018, 197: 331-334.

    [54] [54] RATZKER B, WAGNER A, KALABUKHOV S, et al. Controlled pore growth for enhanced photoluminescence of ceramic phosphors[J]. Scr Mater, 2021, 202: 114008.

    [55] [55] CHENG Z Q, WANG Y B, LI W Y, et al. Porous Ce:YAG ceramics with controllable microstructure for high-brightness laser lighting [J]. J Mater Chem C, 2019, 7(14): 4057-4065.

    [56] [56] SUN B H, ZHANG L, ZHOU T Y, et al. Protected-annealing regulated defects to improve optical properties and luminescence performance of Ce:YAG transparent ceramics for white LEDs[J]. J Mater Chem C, 2019, 7(14): 4057-4065.

    [57] [57] YAO Q, HU P, SUN P, et al. YAG:Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J]. Adv Mater, 2020, 32(19): e1907888.

    [58] [58] DING H, LIU Z H, HU P, et al. High efficiency green-emitting LuAG:Ce ceramic phosphors for laser diode lighting[J]. Adv Opt Mater, 2021, 9(8): 2002141.

    [59] [59] ZHANG L, SUN B H, GU L C, et al. Enhanced light extraction of single-surface textured YAG:Ce transparent ceramics for high power white LEDs[J]. Appl Surf Sci, 2018, 455: 425-432.

    [60] [60] SUN B H, ZHANG L, HUANG G C, et al. Surface texture induced light extraction of novel Ce:YAG ceramic tubes for outdoor lighting[J]. J Mater Sci, 2019, 54(1): 159-171.

    [61] [61] ZHANG L, YAO Q, MA Y L, et al. Taguchi method-assisted optimization of multiple effects on the optical and luminescence performance of Ce:YAG transparent ceramics for high power white LEDs[J]. J Mater Chem C, 2019, 7(37): 11431-11440.

    [62] [62] WAGNER A, RATZKER B, KALABUKHOV S, et al. Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening[J]. J Lumin, 2019, 213: 454-458.

    [63] [63] ZHANG W, HE M T, QIAO X S, et al. Chin J Lumin, 2021, 42(9): 1345-1364.

    [64] [64] LI S X, ZHU Q Q, WANG L, et al. CaAlSiN3:Eu2+ translucent ceramic: A promising robust and efficient red color converter for solid state laser displays and lighting[J]. J Mater Chem C, 2016, 4(35): 8197-8205.

    [65] [65] LI S X, TANG D M, TIAN Z F, et al. New insights into the microstructure of translucent CaAlSiN3:Eu2+ phosphor ceramics for solid-state laser lighting[J]. J Mater Chem C, 2017, 5(5): 1042-1051.

    [66] [66] PENG X L, LI S X, LIU Z H, et al. Highly thermal conductive red-emitting AlN-CaAlSiN3:Eu2+ composite phosphor ceramics for high-power laser-driven lighting[J]. J Eur Ceram Soc, 2021, 41(11): 5650-5657.

    [67] [67] COZZAN C, BRADY M J, O’DEA N, et al. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting[J]. AIP Adv, 2016, 6(10): 105005.

    [68] [68] ZHU Q Q, YANG P F, WANG Z Y, et al. Additive-free Y2O3:Eu3+ red-emitting transparent ceramic with superior thermal conductivity for high-power UV LEDs and UV LDs[J]. J Eur Ceram Soc, 2020, 40(6): 2426-2431.

    [69] [69] CHEN S M, YANG S H, CHEN L, et al. MgO-Y2O3:Eu composite ceramics with high quantum yield and excellent thermal performance[J]. J Eur Ceram Soc, 2023, 43(8): 3553-3562.

    [70] [70] ZHOU Yayun, WANG Lingyan, DENG Tingting, et al. Sci Sin Technol, 2017, 47(11): 1111-1125.

    [71] [71] OSBORNE R A, CHEREPY N J, SEELEY Z M, et al. New red phosphor ceramic K2SiF6:Mn4+[J]. Opt Mater, 2020, 107: 110140.

    [72] [72] ZHANG Y L, LIU Y L, YANG L, et al. Preparation and luminescence properties of thermally stable Mn4+ doped spinel red-emitting ceramic phosphors[J]. J Lumin, 2020, 220: 117016.

    [73] [73] ZHANG Y L, HU S, LIU Y L, et al. Red-emitting Lu3Al5O12:Mn transparent ceramic phosphors: Valence state evolution studies of Mn ions[J]. Ceram Int, 2018, 44(18): 23259-23262.

    [74] [74] HANG Y L, HU S, LIU Y L, et al. Influences of thermal post-treatment on the Mn valence states and luminescence properties of red-emitting Lu3Al5O12:Mn4+ transparent ceramic phosphors[J]. Opt Mater, 2020, 101: 109705.

    [75] [75] TIAN C, LIN H, ZHANG D W, et al. Mn4+ activated Al2O3 red-emitting ceramic phosphor with excellent thermal conductivity[J]. Opt Express, 2019, 27(22): 32666-32678.

    [76] [76] WANG Z X, LIN H, ZHANG D W, et al. Deep-red emitting Mg2TiO4:Mn4+ phosphor ceramics for plant lighting[J]. J Adv Ceram, 2021, 10(1): 88-97.

    [77] [77] KHAIDUKOV N M, BREKHOVSKIKH M N, KIRIKOVA N Y, et al. Luminescence of MgAl2O4 and ZnAl2O4 spinel ceramics containing some 3d ions[J]. Ceram Int, 2020, 46(13): 21351-21359.

    [78] [78] LI K, WANG H, LIU X, et al. Mn2+ activated MgAlON transparent ceramic: A new green-emitting transparent ceramic phosphor for high-power white LED[J]. J Eur Ceram Soc, 2017, 37(13): 4229-4233.

    [79] [79] WIEG A T, PENILLA E H, HARDIN C L, et al. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting[J]. APL Mater, 2022, 106(5): 2903-2910.

    [80] [80] ARREDONDO A, DESIRENA H, MORENO I, et al. Dual color tuning in Ce3+-doped oxyfluoride ceramic phosphor plate for white LED application[J]. J Am Ceram Soc, 2019, 102(3): 1425-1434.

    [81] [81] SUN Y S, ZHAO H Y, QIN Z X, et al. Significant enhancement of luminescence properties of YAG:Ce ceramics by differential grain sizes control[J]. Ceram Int, 2023, 49(10): 16156-16163.

    [82] [82] JIN M, CHENG A P, XU W T, et al. Two-step sintered phosphor ceramics for high-power LED applications: Fine microstructure and luminescent property[J]. Ceram Int, 2023, 49(16): 27631-27640.

    [83] [83] GAO J, XIA Z G, DING Q, et al. Cold sintering of highly transparent calcium fluoride nanoceramic as a universal platform for high-power lighting[J]. Adv Funct Mater, 2023, 33(33): 2302088.

    [84] [84] TAKAHASHI E, TAKAHASHI T, TATAMI J. Room-temperature densification of MgO bulk ceramics with dispersed nitride phosphor particles[J]. Ceram Int, 2021, 47(4): 5013-5018.

    [85] [85] DENG J K, ZHANG H R, ZHANG X J, et al. Enhanced luminescence performance of CaO:Ce3+, Li+, F? phosphor and its phosphor-in-glass based high-power warm LED properties[J]. J Mater Chem C, 2018, 6(15): 4077-4086.

    [86] [86] CAI M S, FANG S Q, HAN T, et al. Selectivity of Mn2+ ion occupancy and energy transfer of Ce3+→Mn2+ ions in garnet solid solution[J]. J Mater Chem C, 2020, 8(41): 14507-14514.

    [87] [87] OH J H, KANG H, KO M, et al. Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight[J]. Opt Express, 2015, 23(15): A791-A804.

    [88] [88] CHEN L, CHENG P, ZHENG G F, et al. A new path for the synthesis of high quantum efficiency narrow-band-emitting K2TiF6:Mn4+ phosphor for wide-gamut displays[J]. Chem Eng J, 2021, 407: 127161.

    [89] [89] SONG E H, ZHOU Y Y, WEI Y, et al. A thermally stable narrow-band green-emitting phosphor MgAl2O4:Mn2+ for wide color gamut backlight display application[J]. J Mater Chem C, 2019, 7(27): 8192-8198.

    [90] [90] CHANG Y P, CHANG J K, CHENG W C, et al. New scheme of a highly-reliable glass-based color wheel for next-generation laser light engine[J]. Opt Mater Express, OME, 2017, 7(3): 1029-1034.

    [91] [91] WANNINGER M. LED light sources for head-up displays[C]//Proc SPIE 5663, Photonics in the Automobile, 2005, 5663: 225-229.

    [92] [92] BLANKENBACH K, BUCKLEY E. Perceptual effects of laser-based HUDs[J]. J Display Technol, 2012, 8(4): 194-197.

    Tools

    Get Citation

    Copy Citation Text

    LING Junrong, ZHOU Youfu, HONG Maochun. Application of Phosphor Ceramics with Lighting and Display[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1023

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 25, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: Youfu ZHOU (yfzhou@fjirsm.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics