Bulletin of the Chinese Ceramic Society, Volume. 43, Issue 9, 3378(2024)

Preparation and Properties of Mg0.27Al2.58O3.73N0.27 Transparent Ceramics by Hot Pressing and Hot Isostatic Pressing Sintering

CHEN Hao1...2, YANG Jingxiao1, XU Yong1,2, JING Zhengyang1, TU Bingtian1,2,*, and WANG Hao12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(35)

    [1] [1] GOLDSTEIN A, KRELL A. Transparent ceramics at 50: progress made and further prospects[J]. Journal of the American Ceramic Society, 2016, 99(10): 3173-3197.

    [2] [2] WANG S F, ZHANG J, LUO D W, et al. Transparent ceramics: processing, materials and applications[J]. Progress in Solid State Chemistry, 2013, 41(1/2): 20-54.

    [3] [3] RUBAT D M M, KLEEBE H J, MLLER M M, et al. Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel[J]. Journal of the American Ceramic Society, 2013, 96(11): 3341-3365.

    [4] [4] MATHERS J P, FREY R G. Transparent aluminum oxynitride-based ceramic article[Z]. Google Patents. 1993.

    [5] [5] MA B Y, ZHANG W, WANG Y Z, et al. Hot isostatic pressing of MgAlON transparent ceramic from carbothermal powder[J]. Ceramics International, 2018, 44: 4512-4515.

    [6] [6] LIU X, WANG H, TU B T, et al. Highly transparent Mg0.27Al2.58O3.73N0.27 ceramic prepared by pressureless sintering[J]. Journal of the American Ceramic Society, 2014, 97(1): 63-66.

    [7] [7] ZONG X, WANG H, GU H, et al. Highly transparent Mg0.27Al2.58O3.73N0.27 ceramic fabricated by aqueous gelcasting, pressureless sintering, and post-HIP[J]. Journal of the American Ceramic Society, 2019, 102(11): 6507-6516.

    [8] [8] ZONG X, WANG H, GU H G, et al. A novel spinel-type Mg0.55Al2.36O3.81N0.19 transparent ceramic with infrared transmittance range comparable to c-plane sapphire[J]. Scripta Materialia, 2020, 178: 428-432.

    [9] [9] RAHAMAN M N. Sintering of ceramics[M]. Carabas, Florida: CRC Press, 2007.

    [10] [10] MORITA K, KIM B N, YOSHIDA H, et al. Distribution of carbon contamination in MgAl2O4 spinel occurring during spark-plasma-sintering (SPS) processing: I-Effect of heating rate and post-annealing[J]. Journal of the European Ceramic Society, 2018, 38(6): 2588-2595.

    [11] [11] MORITA K, KIM B N, YOSHIDA H, et al. Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering (SPS) processing: II-Effect of SPS and loading temperatures[J]. Journal of the European Ceramic Society, 2018, 38(6): 2596-2604.

    [12] [12] FRAGE N, KALABUKHOV S, SVERDLOV N, et al. Densification of transparent yttrium aluminum garnet (YAG) by SPS processing[J]. Journal of the European Ceramic Society, 2010, 30(16): 3331-3337.

    [13] [13] PANG Q L, LIU W L, SHEN J X, et al. Improved optical properties of BN powder shielded Ce: YAG ceramics prepared by hot pressing[J]. Ceramics International, 2022, 48(16): 23821-23827.

    [14] [14] BALABANOV S, PERMIN D, EVSTROPOV T, et al. Hot pressing of Yb:Y2O3 laser ceramics with LiF sintering aid[J]. Optical Materials, 2021, 119: 111349.

    [15] [15] GAN L, PARK Y J, PARK M J, et al. Facile Fabrication of highly transparent yttria ceramics with fine microstructures by a hot-pressing method[J]. Journal of the American Ceramic Society, 2015, 98(7): 2002-2004.

    [16] [16] WANG P, YANG M J, ZHANG S, et al. Suppression of carbon contamination in SPSed CaF2 transparent ceramics by Mo foil[J]. Journal of the European Ceramic Society, 2017, 37: 4103-4107.

    [17] [17] NECINA V, HOSTASA J, PABST W, et al. Magnesium fluoride (MgF2)—a novel sintering additive for the preparation of transparent YAG ceramics via SPS[J]. Journal of the European Ceramic Society, 2022, 42(7): 3290-3296.

    [18] [18] LIU X, WANG H, LAVINA B, et al. Chemical composition, crystal structure, and their relationships with the intrinsic properties of spinel-type crystals based on bond valences[J]. Inorganic Chemistry, 2014, 53(12): 5986-5992.

    [19] [19] HOLLAND T J B. Unit cell refinement from powder diffraction data: the use of regression diagnostics[J]. Mineralogical Magazine, 1997, 61(404): 65-77.

    [20] [20] KRELL A, HUTZLER T, KLIMKE J, et al. Fine-sgrained transparent spinel windows by the processing of different nanopowders[J]. Journal of the American Ceramic Society, 2010, 93(9): 2656-2666.

    [21] [21] MA B Y, ZHANG W, WANG Y Z, et al. Fabrication and nanoindentation characterization of MgAlON transparent ceramics[J]. Optical Materials, 2018, 84: 714-721.

    [22] [22] WILLEMS H X, DE WITH G, METSELAAR R. Thermodynamics of AlON III: stabilization of AlON with MgO[J]. Journal of the European Ceramic Society, 1993, 12(1): 43-49.

    [23] [23] TSUKUMA K, YAMASHITA I, KUSUNOSE T. Transparent 8 mol% Y2O3-ZrO2 (8Y) ceramics[J]. Journal of the American Ceramic Society, 2008, 91(3): 813-818.

    [24] [24] MENDELSON M I. Average grain size in polycrystalline ceramics[J]. Journal of the American Ceramic Society, 1969, 52(8): 443-446.

    [25] [25] KRELL A, HUTZLER T, KLIMKE J. Transmission physics and consequences for materials selection, manufacturing, and applications[J]. Journal of the European Ceramic Society, 2009, 29(2): 207-221.

    [26] [26] GRANON A, GOEURIOT P, THEVENOT F. Aluminum magnesium oxynitride: a new transparent spinel ceramic[J]. Journal of the European Ceramic Society, 1995, 15(3): 249-254.

    [27] [27] HARRIS D C. Materials for infrared windows and domes: properties and performance[M]. Bellingham, Washington: SPIE Press, 1999.

    [28] [28] WAHL J M, HARTNETT T M, GOLDMAN L M, et al. Recent advances in ALON optical ceramic[J]. Window and Dome Technologies and Materials IX, 2005, 5786: 71-82.

    [30] [30] KONDO S, ISHIHARA A, TOCHIGI E, et al. Direct observation of atomic-scale fracture path within ceramic grain boundary core[J]. Nature Communications, 2019, 10: 2112.

    [31] [31] QUINN G. Advanced structural ceramics: a round robin[J]. Journal of the American Ceramic Society, 1990, 73(8): 2374-2384.

    [32] [32] KLEIN C A. Flexural strength of infrared-transmitting window materials: bimodal Weibull statistical analysis[J]. Optical Engineering, 2011, 50(2): 23402-23402-10.

    [33] [33] DENG B, JIANG D Y, GONG J H. Is a three-parameter Weibull function really necessary for the characterization of the statistical variation of the strength of brittle ceramics?[J]. Journal of the European Ceramic Society, 2018, 38(4): 2234-2242.

    [34] [34] KHALILI A, KROMP K. Statistical properties of Weibull estimators[J]. Journal of Materials Science, 1991, 26(24): 6741-6752.

    [35] [35] BERGMAN B. On the estimation of the Weibull modulus[J]. Journal of Materials Science Letters, 1984, 3(8): 689-692.

    [36] [36] TOKARIEV O, SCHNETTER L, BECK T, et al. Grain size effect on the mechanical properties of transparent spinel ceramics[J]. Journal of the European Ceramic Society, 2013, 33(4): 749-757.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Hao, YANG Jingxiao, XU Yong, JING Zhengyang, TU Bingtian, WANG Hao. Preparation and Properties of Mg0.27Al2.58O3.73N0.27 Transparent Ceramics by Hot Pressing and Hot Isostatic Pressing Sintering[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3378

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 21, 2024

    Accepted: --

    Published Online: Nov. 5, 2024

    The Author Email: Bingtian TU (tubt@whut.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics