Journal of Innovative Optical Health Sciences, Volume. 6, Issue 2, 1350007(2013)
COMPLEX OPTICAL CHARACTERIZATION OF MESH IMPLANTS AND ENCAPSULATION AREA
[1] [1] A. G. Kirpichev, N. A. Surkov, Use of Prolen Mesh in the Case of Plastic of the Front Abdominal Wall, Media Sfera, Moscow (2001).
[2] [2] S. C. William, W. K. Kent, "Intra-abdominal placement of antimicrobial-impregnated mesh is associated with noninfectious fever," Surg. Innov. 12, 63 (2005).
[3] [3] V. P. Zakharov, V. I. Belokonev, I. A. Bratchenko, P. E. Timchenko, Yu. V. Ponomareva, A. V. Vavilov, L. T. Volova, "Application of confocal laser microscopy for monitoring mesh implants in herniology," Quantum Electron. 41(4), 318-323 (2011).
[4] [4] M. Wojtkowski, "High-speed optical coherence tomography: Basics and applications," Appl. Opt. 16 (49), 30-61 (2010).
[5] [5] J. Schmitt, S. Xiang, K. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4(95), (1999).
[6] [6] B. Sander, M. Larsen, L. Thrane, J. Hougaard, T. M. J rgensen, "Enhanced optical coherence tomography imaging by multiple scan averaging," British. J. Ophthamol. 89, 207 (2005).
[7] [7] D. P. Popescu, M. D. Hewko, M. G. Sowa, "In vitro assessment of optical properties of blood by applying the extended Huygens-fresnel principle to timedomain optical coherence tomography signal at 1300 nm," Opt. Commun. 269, 247 (2007).
[8] [8] T. M. J rgensen, J. Thomadsen, U. Christensen, W. Soliman, B. Sander, "Enhancing the signal-tonoise ratio in ophthalmic optical coherence tomography by image registration—Method and clinical examples," J. Biomed. Opt. 12, 041208 (2007).
[9] [9] M. Rajadhyaksha, "In vivo confocal scanning laser microscopy of human skin II: Advances in instrumentation and comparision to histology," J. Invest. Dermatol. 113, 293 (1999).
[10] [10] M. D. Egger, M. Petran, "New reflected-light microscope for viewing unstained brain and ganglion cells," Science 157, 305-307 (1967).
[11] [11] V. P. Zakharov, A. R. Sindyaeva, "Multi-parametric function of differential backscattering in 3d biological media with heterogeneities," Laser Phys. 19, 1361-1365 (2007).
[12] [12] V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd edn., SPIE Press, Bellingham (2007).
[13] [13] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, H. H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. Roy. Soc. London A 454, 903-995 (1998).
[14] [14] M. B. Bernini, A. Federico, G. H. Kaufmann, "Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform," Appl. Opt. 48, 6862-6869 (2009).
[15] [15] D. Donoho, I. Johnstone, "Ideal spatial adaptation via wavelet shrinkage," Biometrika 81, 425-455 (1994).
Get Citation
Copy Citation Text
VALERIY P. ZAKHAROV, IVAN A. BRATCHENKO, VLADIMIR I. BELOKONEV, DMITRY V. KORNILIN, OLEG O. MYAKININ. COMPLEX OPTICAL CHARACTERIZATION OF MESH IMPLANTS AND ENCAPSULATION AREA[J]. Journal of Innovative Optical Health Sciences, 2013, 6(2): 1350007
Received: Nov. 6, 2012
Accepted: --
Published Online: Jul. 17, 2020
The Author Email: BRATCHENKO IVAN A. (ud_liche@mail.ru)