Journal of the Chinese Ceramic Society, Volume. 52, Issue 5, 1778(2024)
Diamond Materials and Devices for Extreme Environment Applications in Aerospace
[1] [1] DANG C Q, CHOU J P, DAI B, et al. Achieving large uniform tensile elasticity in microfabricated diamond[J]. Science, 2021, 371(6524): 76-78.
[2] [2] ARAUJO D, SUZUKI M, LLORET F, et al. Diamond for electronics: Materials, processing and devices[J]. Materials, 2021, 14(22): 7081.
[3] [3] PARK K, LEE H-P, VAN DUREN J K J, et al. Single Crystal Diamond: An Ultimate Semiconductor[C]. Chicago: Office of Science, U.S. Department of Energy, 2020.
[4] [4] TSAO J, CHOWDHURY S, HOLLIS M, et al. Ultrawide‐bandgap semiconductors: Research opportunities and challenges[J]. Adv Electron Mater, 2018, 4(1): 1600501.
[5] [5] ISBERG J, HAMMERSBERG J, JOHANSSON E, et al. High carrier mobility in single-crystal plasma-deposited diamond[J]. Science, 2002, 297(5587): 1670-1672.
[6] [6] SANG L W. Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices[J]. Funct Diam, 2021, 1(1): 174-188.
[7] [7] LU W, LI J, MIAO J Y, et al. Application of high-thermal-conductivity diamond for space phased array antenna[J]. Funct Diam, 2021, 1(1): 189-196.
[8] [8] AIELLO G, SCHERER T, AVRAMIDIS K, et al. Diamond window technology for electron cyclotron heating and current drive: State of the art[J]. Fusion Sci Technol, 2019, 75(7): 719-729.
[9] [9] LI Y, CHEN X Z, RAN M W, et al. Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond[J]. Chin Phys B, 2022, 31(4): 046107.
[10] [10] SHAO Wei. Study on the formation mechanism of diamond germanium vacancy color center and experimental preparation[D]. Baotou: Inner Mongolia University of Science & Technology, 2022.
[11] [11] MALYKHIN S, MINDARAVA Y, ISMAGILOV R, et al. Control of NV, SiV and GeV centers formation in single crystal diamond needles[J]. Diam Relat Mater, 2022, 125: 109007.
[12] [12] LI Chengming, REN Feitong, SHAO Siwu, et al. J Synth Cryst, 2022, 51(5): 759-780.
[13] [13] RODGERS L V H, HUGHES L B, XIE M Z, et al. Materials challenges for quantum technologies based on color centers in diamond[J]. MRS Bull, 2021, 46(7): 623-633.
[14] [14] CAO Hongxia. Signal processing methods for X-ray pulsar autonomous navigation syatems[D]. Harbin: Harbin Institute of Technology, 2015.
[15] [15] BAI Gang, XIAO Wei, GAO Feng, et al. Aerosp Mater Technol, 2021, 51(5): 41-50.
[16] [16] ZHANG Binglong, SU Yun, ZHENG Guoxian, et al. Deep Space Exploration, 2013(1): 29-34.
[17] [17] WANG Shifa, LI Danming, XIAO Yuhua, et al. Mater Rev, 2018, 32(9): 1459-1468.
[18] [18] SHIMAOKA T, KOIZUMI S, J H, et al. Recent progress in diamond radiation detectors[J]. Funct Diam, 2021, 1(1): 205-220.
[19] [19] LIAO M Y. Progress in semiconductor diamond photodetectors and MEMS sensors[J]. Funct Diam, 2021, 1(1): 29-46.
[20] [20] GRILJ V, SKUKAN N, JAK?I? M, et al. Irradiation of thin diamond detectors and radiation hardness tests using MeV protons[J]. Nucl Instrum Meth Phys Res Sect B Beam Interact Mater At, 2013, 306: 191-194.
[21] [21] BAUER C, BAUMANN I, COLLEDANI C, et al. Radiation Hardness Studies of CVD Diamond Detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 367(1/3): 207-211.
[22] [22] SATO Y, MURAKAMI H, SHIMAOKA T, et al. Charge-collection efficiency of single-crystal CVD diamond detector for low-energy charged particles with energies ranging from 100 keV to 2 MeV[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2016, 834: 218-222.
[23] [23] LIAO M Y, WANG X, TERAJI T, et al. Light intensity dependence of photocurrent gain in single-crystal diamond detectors[J]. Phys Rev B, 2010, 81(3): 033304.
[24] [24] LIU Z C, ZHAO D, AO J P, et al. Responsivity improvement of Ti-diamond-Ti structured UV photodetector through photocurrent gain[J]. Opt Express, 2018, 26(13): 17092-17098.
[25] [25] KRASILNIKOV A V, KANEKO J, ISOBE M, et al. Fusion Neutronic Source deuterium-tritium neutron spectrum measurements using natural diamond detectors[J]. Rev Sci Instrum, 1997, 68(4): 1720-1724.
[26] [26] CHERNYKH S V, CHERNYKH A V, TARELKIN S A, et al. High-pressure high-temperature single-crystal diamond type IIa characterization for particle detectors[J]. Phys Status Solidi A, 2020, 217(8): 1900888.
[27] [27] SHIMAOKA T, KANEKO J H, TSUBOTA M, et al. High-performance diamond radiation detectors produced by lift-off method[J]. EPL Europhys Lett, 2016, 113(6): 62001.
[28] [28] BERDERMANN E, AFANACIEV K, CIOBANU M, et al. Progress in detector properties of heteroepitaxial diamond grown by chemical vapor deposition on Ir/YSZ/Si(001) wafers[J]. Diam Relat Mater, 2019, 97: 107420.
[29] [29] STEHL C, FISCHER M, GSELL S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications[J]. Appl Phys Lett, 2013, 103(15): 151905.
[30] [30] ZHANG Z F, LIN C N, YANG X, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array[J]. Carbon, 2021, 173: 427-432.
[31] [31] CIOBANU M, POMORSKI M, BERDERMANN E, et al. Simulations and test results of large area continuous position sensitive diamond detectors[J]. Diam Relat Mater, 2016, 65: 115-124.
[32] [32] KANEKO J H, TANAKA T, KAWAMURA S, et al. Radiation detector made of a high-quality polycrystalline diamond[J]. Diam Relat Mater, 2005, 14(11/12): 2027-2030.
[33] [33] LIU L Y, OUYANG X P, ZHANG J F, et al. Polycrystalline CVD diamond detector: Fast response and high sensitivity with large area[J]. AIP Adv, 2014, 4(1): 017114.
[34] [34] LIU K, WANG W H, DAI B, et al. Impact of UV spot position on forward and reverse photocurrent symmetry in a gold-diamond-gold detector[J]. Appl Phys Lett, 2018, 113(2): 023501.
[35] [35] KISHISHITA T, ICHIKAWA K, TAUCHI K, et al. A membrane, pseudo-vertical p-i-n diamond detector[J]. J Nucl Sci Technol, 2023, 60(10): 1285-1291.
[36] [36] WULZ T, GERDING W, LAVRIK N, et al. Realization of deep 3D metal electrodes in diamond radiation detectors[J]. Appl Phys Lett, 2018, 112(22): 222101.
[37] [37] LAGOMARSINO S, BELLINI M, CORSI C, et al. Three-dimensional diamond detectors: Charge collection efficiency of graphitic electrodes[J]. Appl Phys Lett, 2013, 103(23): 233507.
[38] [38] LIU K, DAI B, RALCHENKO V, et al. Single crystal diamond UV detector with a groove-shaped electrode structure and enhanced sensitivity[J]. Sens Actuat A Phys, 2017, 259: 121-126.
[39] [39] ALMAVIVA S, MARINELLI M, MILANI E, et al. Chemical vapor deposition diamond based multilayered radiation detector: Physical analysis of detection properties[J]. J Appl Phys, 2010, 107(1): 014511.
[40] [40] POMORSKI M, CAYLAR B, BERGONZO P. Super-thin single crystal diamond membrane radiation detectors[J]. Appl Phys Lett, 2013, 103(11): 112106.
[41] [41] ZHANG X H, LIU K, LIU B J, et al. Phenomenon of photo-regulation on gold/diamond Schottky barriers and its detector applications[J]. Appl Phys Lett, 2023, 122(6): 062106.
[42] [42] LIU J W, CHANG J F, ZHANG J Z, et al. Design, fabrication and testing of CVD diamond detectors with high performance[J]. AIP Adv, 2019, 9(4): 045205.
[43] [43] LIU J W, CHANG J F, ZHONG G Q, et al. Fabrication and performance of single crystal diamond neutron and gamma ray detectors[J]. AIP Adv, 2019, 9(9): 095103.
[44] [44] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers[J]. Sci Rep, 2017, 7: 44462.
[45] [45] KIM S W, TAKAYA R, HIRANO S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ( ) misoriented substrate by step-flow mode[J]. Appl Phys Express, 2021, 14(11): 115501.
[46] [46] KIM S W, KAWAMATA Y, TAKAYA R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on ( ) sapphire substrate[J]. Appl Phys Lett, 2020, 117(20): 202102.
[47] [47] LIU Benjian, ZHANG Sen, HAO Xiaobin, et al. J Synth Cryst, 2022, 51(5): 801-813.
[48] [48] ZHOU Yi. Optimal design of energy converters of dynamic radioisotope piezo-thermoelectric generator[D]. Harbin: Harbin Institute of Technology, 2019.
[49] [49] LUO Shunzhong, WANG Guanquan, ZHANG Huaming. J Isot, 2011, 24(1): 1-11.
[50] [50] TRUCCHI D M, CAPPELLI E, LISI N, et al. Feasibility of CVD diamond radiation energy conversion devices[J]. Diam Relat Mater, 2006, 15(11/12): 1980-1985.
[51] [51] LIU B J, LIU K, ZHAO J W, et al. Enhanced performance of diamond Schottky nuclear batteries by using ZnO as electron transport layer[J]. Diam Relat Mater, 2020, 109: 108026.
[52] [52] LIU Y M, LU J B, LI X Y, et al. Theoretical prediction of diamond betavoltaic batteries performance using 63 Ni[J]. Chin Phys Lett, 2018, 35(7): 072301.
[53] [53] SANG D D, WANG Q R, WANG Q L, et al. Improved electrical transport properties of an n-ZnO nanowire/p-diamond heterojunction[J]. RSC Adv, 2018, 8(50): 28804-28809.
[54] [54] HIRAMA K, TANIYASU Y, KASU M. Electroluminescence and capacitance-voltage characteristics of single-crystal n-type AlN (0001)/p-type diamond (111) heterojunction diodes[J]. Appl Phys Lett, 2011, 98(1): 011908.
[55] [55] KIM H, TARELKIN S, POLYAKOV A, et al. Ultrawide-bandgap p-n heterojunction of diamond/β-Ga2O3 for a solar-blind photodiode[J]. ECS J Solid State Sci Technol, 2020, 9(4): 045004.
[56] [56] WANG L Y, CHENG S H, WU C Z, et al. Fabrication and high temperature electronic behaviors of n-WO3 nanorods/p-diamond heterojunction[J]. Appl Phys Lett, 2017, 110(5): 052106.
[57] [57] WANG C S, WANG Y, LIAN P Y, et al. Space phased array antenna developments: A perspective on structural design[J]. IEEE Aerosp Electron Syst Mag, 2020, 35(7): 44-63.
[58] [58] SCHUH P, SLEDZIK H, REBER R, et al. T/R-module technologies today and future trends[C]//The 40th European Microwave Conference. Paris, France. IEEE, 2010: 1540-1543.
[59] [59] LIN C, LIU H, ZHENG Y Y. Application of GaN high power chips in T/R modules[C]//2013 Proceedings of the International Symposium on Antennas & Propagation. Nanjing, China. IEEE, 2013: 515-518.
[60] [60] DESUTTER J, TANG L, FRANCOEUR M. A near-field radiative heat transfer device[J]. Nat Nanotechnol, 2019, 14(8): 751-755.
[61] [61] PAPADAKIS G T, ZHAO B, BUDDHIRAJU S, et al. Gate-tunable near-field heat transfer[J]. ACS Photoni, 2019, 6(3): 709-719.
[62] [62] HU L, NARAYANASWAMY A, CHEN X Y, et al. Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law[J]. Appl Phys Lett, 2008, 92(13): 133106.
[63] [63] YANG J, DU W, SU Y S, et al. Observing of the super-Planckian near-field thermal radiation between graphene sheets[J]. Nat Commun, 2018, 9(1): 4033.
[64] [64] XU D Y, ZHAO J M, LIU L H. Photonic p-n junction: An ideal near-field heat flux modulator[J]. Phys Rev B, 2022, 106(12): L121403.
[65] [65] SHI K Z, CHEN Z Y, XING Y X, et al. Near-field radiative heat transfer modulation with an ultrahigh dynamic range through mode mismatching[J]. Nano Lett, 2022, 22(19): 7753-7760.
[66] [66] XU D Y, ZHAO J M, LIU L H. Near-field radiation assisted smart skin for spacecraft thermal control[J]. Int J Therm Sci, 2021, 165: 106934.
[67] [67] THOMAS N H, SHERROTT M C, BROULLIET J, et al. Electronic modulation of near-field radiative transfer in graphene field effect heterostructures[J]. Nano Lett, 2019, 19(6): 3898-3904.
[68] [68] SHI K Z, CHEN Z Y, XU X N, et al. Optimized colossal near-field thermal radiation enabled by manipulating coupled plasmon polariton geometry[J]. Adv Mater, 2021, 33(52): e2106097.
[69] [69] ALHASANI R, YABE T, IYAMA Y, et al. An enhanced two-dimensional hole gas (2DHG) C-H diamond with positive surface charge model for advanced normally-off MOSFET devices[J]. Sci Rep, 2022, 12: 4203.
[70] [70] CHEN G Q, WANG W, LIN F, et al. Electrical characteristics of diamond MOSFET with 2DHG on a heteroepitaxial diamond substrate[J]. Materials, 2022, 15(7): 2557.
[71] [71] LIU B J, BI T, FU Y, et al. MOSFETs on (110) C—H diamond: ALD Al?O?/diamond interface analysis and high performance normally-OFF operation realization[J]. IEEE Trans Electron Devices, 2022, 69(3): 949-955.
[72] [72] SHAO Fei, YANG Ning, SUN Wei, et al. Spacecr Eng, 2018, 27(2): 95-103.
[73] [73] LUO Rongzheng, SUN Bo, ZHANG Lei, et al. Spacecr Eng, 2013, 22(4): 95-102.
[74] [74] BAI Xiaohong. The research on the design, fabrication, and performance optimization of fiber Bragg grating ultrasonic sensor[D]. Xi’an: Northwest University, 2021.
[75] [75] ZHOU Jian, HOU Zhanqiang, XIAO Dingbang. Natl Def Sci Technol, 2015, 36(4): 15-19.
[76] [76] GAO Ran. Research on structural design and preparation process optimization of thin film strain sensor[D]. Taiyuan: North University of China, 2022.
[77] [77] WU Linhui. Studies on preparation and temperature sensitivity properties of flexible temperature sensor[D]. Wuhan: Wuhan University, 2019.
[78] [78] FENG Shuaijie, SHI Xinqun, DENG Ning, et al. Micronanoelectron Technol, 2016, 53(2): 114-118.
[79] [79] JUNG M, RICKHAUS P, ZIHLMANN S, et al. Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction[J]. Nano Lett, 2016, 16(11): 6988-6993.
[80] [80] WANG M Q, SUN H Y, YE X Y, et al. Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision[J]. Sci Adv, 2022, 8(38): eabn9573.
[81] [81] HO K O, SHEN Y, PANG Y Y, et al. Diamond quantum sensors: From physics to applications on condensed matter research[J]. Funct Diam, 2021, 1(1): 160-173.
[82] [82] BARRY J F, SCHLOSS J M, BAUCH E, et al. Sensitivity optimization for NV-diamond magnetometry[J]. Rev Mod Phys, 2020, 92: 015004.
[83] [83] SAVAGE N. Quantum diamond sensors[J]. Nature, 2021, 591(7851): S37.
[84] [84] SHISHIR D, SAHA K. Nitrogen vacancy centre-based diamond microscope for investigating quantum materials[J]. Bull Mater Sci, 2021, 44(4): 1-10.
[85] [85] KUWAHATA A, KITAIZUMI T, SAICHI K, et al. Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications[J]. Sci Rep, 2020, 10(1): 2483.
[86] [86] DOLDE F, FEDDER H, DOHERTY M W, et al. Electric-field sensing using single diamond spins[J]. Nat Phys, 2011, 7(6): 459-463.
[87] [87] YAO Miaomiao. Effects of stress field on the charge stability of nitrogen vacancy centers in diamond[D]. Nanjing: Nanjing University, 2017.
[88] [88] BARFUSS A, KASPERCZYK M, K?LBL J, et al. Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems[J]. Phys Rev B, 2019, 99(17): 174102.
[89] [89] BROADWAY D A, JOHNSON B C, BARSON M S J, et al. Microscopic imaging of the stress tensor in diamond using in situ quantum sensors[J]. Nano Lett, 2019, 19(7): 4543-4550.
[90] [90] ACOSTA V M, BAUCH E, LEDBETTER M P, et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond[J]. Phys Rev Lett, 2010, 104(7): 070801.
[91] [91] CHEN X D, DONG C H, SUN F W, et al. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond[J]. Appl Phys Lett, 2011, 99(16): 161903.
[92] [92] DOHERTY M W, ACOSTA V M, JARMOLA A, et al. Temperature shifts of the resonances of the NV- center in diamond[J]. Phys Rev B, 2014, 90(4): 041201.
[93] [93] SCHIRHAGL R, CHANG K, LORETZ M, et al. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology[J]. Annu Rev Phys Chem, 2014, 65: 83-105.
[94] [94] HE J, JIA Y W, TU J P, et al. Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation[J]. Acta Phys Sin, 2022, 71(18): 188102.
[95] [95] YU Huiyao. Properties, preparations and applications of diamond ensemble nitrogen-vacancy center sensors[D]. Hefei: University of Science and Technology of China, 2021.
[96] [96] YAITA J, TSUJI T, HATANO M, et al. Preferentially aligned nitrogen-vacancy centers in heteroepitaxial (111) diamonds on Si substrates via 3C-SiC intermediate layers[J]. Appl Phys Express, 2018, 11(4): 045501.
[97] [97] WANG S X, BIAN G D, FAN P C, et al. Enhancing quantum sensing performance by optimizing the concentration and dephasing time of the NV ensemble in CVD-diamond[J]. Opt Mater Express, 2023, 13(2): 393.
[98] [98] WANG Z C, KONG F, ZHAO P J, et al. Picotesla magnetometry of microwave fields with diamond sensors[J]. Sci Adv, 2022, 8(32): eabq8158.
[99] [99] NAIDES M. Trapping Ultracold Gases near Cryogenic Materials with Rapid Reconfigurability[D]. California: Stanford University, 2014.
[100] [100] WANG Weihua, DAI Bing, WANG Yang, et al. Mater Sci Technol, 2020, 28(3): 42-57.
[101] [101] DITCHBURN R W. Diamond as an optical material for space optics[J]. Opt Acta Int J Opt, 1982, 29(4): 355-359.
[102] [102] WANG Li, WU Fenzhi, LIANG Xiao. Infrared Laser Eng, 2020, 49(5): 41-46.
[103] [103] ZHANG Hui, ZHOU Xiangdong, WANG Xinmei, et al. Acta Aeronaut Astronaut Sin, 2020, 41(8): 623719.
[104] [104] HUANG Xin, WANG Li, LU Xin. Aerosp Contr Appl, 2008, 34(1): 51-55.
[105] [105] WANG Jing. Optical system design of a star srnsor with wide spectrum[D]. Harbin: Harbin Institute of Technology, 2007.
[106] [106] ZHOU Jiantao, CAI Wei, WU Yanpeng, et al. J Astronaut, 2010, 31(1): 24-30.
Get Citation
Copy Citation Text
WANG Weihua, JIA Yi, LI Zhen, YANG Yu, ZHANG Yao, DAI Bing, HAN Jiecai, ZHU Jiaqi. Diamond Materials and Devices for Extreme Environment Applications in Aerospace[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1778
Category:
Received: Sep. 5, 2023
Accepted: --
Published Online: Aug. 20, 2024
The Author Email: Bing DAI (daib@hit.edu.cn)