Journal of Applied Optics, Volume. 44, Issue 6, 1201(2023)

Numerical simulation of thermal effects in high-power diamond Raman lasers

Fei ZHANG1...2, Hao ZHENG1,2, Pengfei LI1,2, Hui CHEN1,2, Jie DING1,2, Yaoyao QI1,2, Bingzheng YAN1,2, Yulei WANG1,2, Zhiwei LYU1,2, and Zhenxu BAI12,* |Show fewer author(s)
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • show less
    References(41)

    [1] C JAUREGUI, J LIMPERT, A TUNNERMANN. High-power fibre lasers. Nature Photonics, 7, 861-867(2013).

    [2] Yu DING, Feng JIANG, Rongshan ZHENG et al. Overview of high energy laser weapon development in USA (invited). Electro-Optic Technology Application, 36, 1-9(2021).

    [3] Mengzhen ZHU, Xia CHEN, Xu LIU et al. Situation and key technology of tactical laser anti-UAV. Infrared and Laser Engineering, 50, 20200230(2021).

    [4] Pu ZHOU, Tianfu YAO, Chenchen FAN et al. 50th anniversary of Raman fiber laser: history, progress and prospect (invited). Infrared and Laser Engineering, 51, 20220015(2022).

    [5] V R SUPRADEEPA, Y FENG, J W NICHOLSON. Raman fiber lasers. Journal of Optics, 19, 023001(2017).

    [6] X W HUO, Y Y QI, Y ZHANG et al. Research development of 589 nm laser for sodium laser guide stars. Optics and Lasers in Engineering, 134, 106207(2020).

    [7] Zhenxu BAI, Hui CHEN, Yuqi LI et al. Development of beam brightness enhancement based on diamond Raman conversion. Infrared and Laser Engineering, 50, 20200098(2021).

    [8] Yakai ZHANG, Hui CHEN, Zhenxu BAI et al. Multi-wavelength red diamond Raman laser. Infrared and Laser Engineering, 52, 20230329(2023).

    [9] Zhenxu BAI, Xuezong YANG, Hui CHEN et al. Research progress of high-power diamond laser technology (invited). Infrared and Laser Engineering, 49, 20201076(2020).

    [10] R J WILLIAMS, O KITZLER, Z X BAI et al. High power diamond Raman lasers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1602214(2018).

    [11] H JASBEER, R J WILLIAMS, O KITZLER et al. Wavelength diversification of high-power external cavity diamond Raman lasers using intracavity harmonic generation. Optics Express, 26, 1930-1941(2018).

    [12] S SARANG, M RICHARDSON. Power scaling of CW crystalline OPOs and Raman lasers. Photonics, 8, 565-571(2021).

    [13] Zhenxu BAI, Hui CHEN, Zhanpeng ZHANG et al. Hundred-watt dual-wavelength diamond Raman laser at 1.2/1.5 μm (invited). Infrared and Laser Engineering, 50, 20210685(2021).

    [14] S ANTIPOV, A SABELLA, R J WILLIAMS et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam. Optics Letters, 44, 2506-2509(2019).

    [15] Z X BAI, R J WILLIAMS, O KITZLER et al. 302 W quasi-continuous cascaded diamond Raman laser at 15 microns with large brightness enhancement. Optics Express, 26, 19797-19803(2018).

    [16] X Z YANG, O KITZLER, D J SPENCE et al. Diamond sodium guide star laser. Optics Letters, 45, 1898-1901(2020).

    [17] Z X BAI, R J WILLIAMS, H JASBEER et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion. Optics Letters, 43, 563-566(2018).

    [18] Zhenxu BAI, Hui CHEN, Jie DING et al. High-power Brillouin frequency comb based on free-space optical cavity. Chinese Journal of Lasers, 49, 0415001(2022).

    [19] H CHEN, Z X BAI, Y P CAI et al. Order controllable enhanced stimulated Brillouin scattering utilizing cascaded diamond Raman conversion. Applied Physics Letters, 122, 092202(2023).

    [20] R J WILLIAMS, J NOLD, M STRECKER et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond. Laser & Photonics Reviews, 9, 405-411(2015).

    [21] V P PASHININ, V G RALCHENKO, A P BOLSHAKOV et al. External-cavity diamond Raman laser performance at 1 240 nm and 1 485 nm wavelengths with high pulse energy. Laser Physics Letters, 13, 065001(2016).

    [22] S ANTIPOV, R J WILLIAMS, A SABELLA et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power. Optics Express, 28, 15232-15239(2020).

    [23] R MILDREN, J RABEAU. Optical engineering of diamond, 353-384(2013).

    [24] A MCKAY, H LIU, O KITZLER et al. An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1 240 nm) and second (1 485 nm) Stokes output. Laser Physics Letters, 10, 105801(2013).

    [25] Y L LI, J DING, Z X BAI et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser. High Power Laser Science and Engineering, 9, e35(2021).

    [26] Z X BAI, Z P ZHANG, K WANG et al. Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method. Nanomaterials, 11, 1572-1579(2021).

    [27] Q X GONG, M X ZHANG, C N LIN et al. Analysis of thermal effects in kilowatt high power diamond Raman lasers. Crystals, 12, 1824(2022).

    [28] V FROMZEL, N TER-GABRIELYAN, M DUBINSKII. Efficient resonantly-clad-pumped laser based on a Er: YAG-core planar waveguide. Optics Express, 26, 3932-3937(2018).

    [29] J LIU, J D WU, H L CHEN et al. Short-pulsed Raman fiber laser and its dynamics. Science China Physics, Mechanics & Astronomy, 64, 1-21(2020).

    [30] W L YU, P YAN, Q R XIAO et al. Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers. Applied Optics, 60, 2046-2055(2021).

    [31] Q C WANG, Q L LONG, Y A GAO et al. High-efficiency Ho:YLF slab laser with 125 W continuous-wave output power. Applied Optics, 60, 8046-8049(2021).

    [32] S MI, J LI, D WEI et al. 105 W continuous-wave diode-pumped Tm:YAP slab laser with high beam quality. Optics & Laser Technology, 138, 106847(2021).

    [33] S NAGEL, B METZGER, D BAUER et al. Thin-disk laser system operating above 10 kW at near fundamental mode beam quality. Optics Letters, 46, 965-968(2021).

    [34] M A AHMED, F BEIROW, A LOESCHER et al. High-power thin-disk lasers emitting beams with axially symmetric polarizations. Nanophotonics, 11, 835-846(2022).

    [35] H TU, S H MA, Z G HU et al. Efficient monolithic diamond Raman yellow laser at 572.5 nm. Optical Materials, 114, 110912(2021).

    [36] Q Q YAO, Y DONG, Q WANG et al. Beam quality improvement by controlling thermal lens spherical aberration in an end-pumped Nd:YVO4 laser. Applied Optics, 57, 2245-2249(2018).

    [37] K N RAMESH, T K SHARMA, G A P RAO. Latest advancements in heat transfer enhancement in the micro-channel heat sinks: a review. Archives of Computational Methods in Engineering, 28, 3135-3165(2021).

    [38] K J KIM, B HAN, A BAR-COHEN. Thermal and optical performance of cryogenically cooled laser diode bars mounted on pin-finned microcoolers. Applied Physics B, 127, 1-9(2021).

    [39] J Y FANG, H ZHANG, Y G ZOU et al. Thermal management of a semiconductor laser array based on a graphite heat sink. Applied Optics, 58, 7708-7715(2019).

    [40] J DING, Y L LI, H CHEN et al. Thermal modeling of an external cavity diamond Raman laser. Optics & Laser Technology, 156, 108578(2022).

    [41] H ZHANG, Y WEN, L ZHANG et al. Influences of pump spot radius and depth of focus on the thermal effect of Tm:YAP crystal. Current Optics and Photonics, 3, 458-465(2019).

    Tools

    Get Citation

    Copy Citation Text

    Fei ZHANG, Hao ZHENG, Pengfei LI, Hui CHEN, Jie DING, Yaoyao QI, Bingzheng YAN, Yulei WANG, Zhiwei LYU, Zhenxu BAI. Numerical simulation of thermal effects in high-power diamond Raman lasers[J]. Journal of Applied Optics, 2023, 44(6): 1201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 14, 2023

    Accepted: --

    Published Online: Mar. 12, 2024

    The Author Email: BAI Zhenxu (白振旭)

    DOI:10.5768/JAO202344.0610006

    Topics