Optics and Precision Engineering, Volume. 31, Issue 24, 3651(2023)

Infrared image generation with unpaired training samples

Wei CAI, Bo JIANG*, Xinhao JIANG, and Zhiyong YANG
Author Affiliations
  • Armament Launch Theory and Technology Key Discipline Laboratory of PRC, Rocket Force University of Engineering, Xi′an710025, China
  • show less
    References(22)

    [1] LATGER J, CATHALA T, DOUCHIN N et al. Simulation of active and passive infrared images using the SE-WORKBENCH[C], 6543, 11-25(2007).

    [2] JOHNSON K, CURRAN A, LESS D et al. MuSES: a new heat and signature management design tool for virtual prototyping[C](1998).

    [3] SCHOTT J R, BROWN S D, RAQUEÑO R V et al. An advanced synthetic image generation model and its application to multi/hyperspectral algorithm development[J]. Canadian Journal of Remote Sensing, 25, 99-111(1999).

    [4] [4] 杨艳春, 高晓宇, 党建武, 等. 基于WEMD和生成对抗网络重建的红外与可见光图像融合[J]. 光学 精密工程, 2022, 30(3): 320-330. doi: 10.37188/OPE.20223003.0320YANGY C, GAOX Y, DANGJ W, et al. Infrared and visible image fusion based on WEMD and generative adversarial network reconstruction[J]. Opt. Precision Eng., 2022, 30(3): 320-330.(in Chinese). doi: 10.37188/OPE.20223003.0320

    [5] [5] 杨植凯, 卜乐平, 王腾, 等. 基于循环一致性对抗网络的室内火焰图像场景迁移[J]. 光学 精密工程, 2020, 28(3): 745-758. doi: 10.3788/ope.20202803.0745YANGZ K, BUL P, WANGT, et al. Scenemigration of indoor flame image based on Cycle-Consistent adversarial networks[J]. Opt. Precision Eng., 2020, 28(3): 745-758.(in Chinese). doi: 10.3788/ope.20202803.0745

    [6] [6] 徐哲, 耿杰, 蒋雯, 等. 联合训练生成对抗网络的半监督分类方法[J]. 光学 精密工程, 2021, 29(5): 1127-1135. doi: 10.37188/OPE.20212905.1127XUZ, GENGJ, JIANGW, et al. Co-training generative adversarial networks for semi-supervised classification method[J]. Opt. Precision Eng., 2021, 29(5): 1127-1135.(in Chinese). doi: 10.37188/OPE.20212905.1127

    [7] ISOLA P, ZHU J Y, ZHOU T H et al. Image-to-image translation with conditional adversarial networks[C], 5967-5976(21).

    [8] ZHU J Y, PARK T, ISOLA P et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C], 2242-2251(22).

    [9] KIM T, KIM H et al. Learning to discover cross-domain relations with generative adversarial networks[C], 1857-1865(2017).

    [10] YI Z L, ZHANG H, TAN P et al. DualGAN: unsupervised dual learning for image-to-image translation[C], 2868-2876(22).

    [11] CHEN T, KORNBLITH S, NOROUZI M et al. A simple framework for contrastive learning of visual representations[C], 1597-1607(2020).

    [13] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C], 1800-1807(21).

    [14] GUTMANN M, HYVÄRINEN A. Noise-contrastive estimation: a new estimation principle for unnormalized statistical models[C], 297-304(2010).

    [16] WANG Z, BOVIK A C, SHEIKH H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [17] CHE Z P, PURUSHOTHAM S, CHO K et al. Recurrent neural networks for multivariate time series with missing values[J]. Scientific Reports, 8, 6085(2018).

    [19] CHANG H Y, WANG Z X, CHUANG Y Y. Domain-Specific Mappings for Generative Adversarial Style Transfer[M]. Computer Vision - ECCV 2020, 573-589(2020).

    Tools

    Get Citation

    Copy Citation Text

    Wei CAI, Bo JIANG, Xinhao JIANG, Zhiyong YANG. Infrared image generation with unpaired training samples[J]. Optics and Precision Engineering, 2023, 31(24): 3651

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 28, 2022

    Accepted: --

    Published Online: Jan. 5, 2024

    The Author Email: Bo JIANG (jiang20202033@163.com)

    DOI:10.37188/OPE.20233124.3651

    Topics