Acta Optica Sinica, Volume. 42, Issue 13, 1315002(2022)

Hybrid-Convolution-Based Reconstruction for Limited-View Emission Spectrum Tomography

Sunyong Zhu1,2, Ying Jin2、*, Quanying Wu1、**, Haishan Liu2, and Guohai Situ2
Author Affiliations
  • 1College of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009,Jiangsu , China
  • 2Laboratory of Information Optics and Opto-Electronic Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    References(37)

    [1] Gupta A K, Bolz S, Hasegawa T. Effect of air preheat temperature and oxygen concentration on flame structure and emission[J]. Journal of Energy Resources Technology, 121, 209-216(1999).

    [2] Denisova N, Tretyakov P, Tupikin A. Emission tomography in flame diagnostics[J]. Combustion and Flame, 160, 577-588(2013).

    [3] Brisley P M, Lu G, Yan Y et al. Three dimensional temperature measurement of combustion flames using a single monochromatic CCD camera[C], 2166-2169(2004).

    [4] Jeong Y K, Jeon C H, Chang Y J. Evaluation of the equivalence ratio of the reacting mixture using intensity ratio of chemiluminescence in laminar partially premixed CH4-air flames[J]. Experimental Thermal and Fluid Science, 30, 663-673(2006).

    [5] Ishino Y, Ohiwa N. Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame[J]. JSME International Journal Series B, 48, 34-40(2005).

    [6] Floyd J, Kempf A M. Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner[J]. Proceedings of the Combustion Institute, 33, 751-758(2011).

    [7] Floyd J, Geipel P, Kempf A M. Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame[J]. Combustion and Flame, 158, 376-391(2011).

    [8] Mohri K, Görs S, Schöler J et al. Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence[J]. Applied Optics, 56, 7385-7395(2017).

    [9] Unterberger A, Kempf A, Mohri K. 3D evolutionary reconstruction of scalar fields in the gas-phase[J]. Energies, 12, 2075(2019).

    [10] Jin Y, Zhang W Q, Song Y et al. Three-dimensional rapid flame chemiluminescence tomography via deep learning[J]. Optics Express, 27, 27308-27334(2019).

    [11] Jin Y, Song Y, Qu X J et al. Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography[J]. Optics Express, 25, 4640-4654(2017).

    [12] Hossain M M M, Lu G, Yan Y. Optical fiber imaging based tomographic reconstruction of burner flames[J]. IEEE Transactions on Instrumentation and Measurement, 61, 1417-1425(2012).

    [13] Wan X, Zhang Z M, Chen Q. Three-dimensional radiation thermometer combining near-infrared passband thermometry with optical fiber bundle tomography[J]. Europhysics Letters, 103, 50005(2013).

    [14] Yu T, Liu H C, Zhang J Q et al. Toward real-time volumetric tomography for combustion diagnostics via dimension reduction[J]. Optics Letters, 43, 1107-1110(2018).

    [15] Yu T, Ruan C, Chen F E et al. Measurement of the 3D Rayleigh index field via time-resolved CH* computed tomography[J]. Aerospace Science and Technology, 95, 105487(2019).

    [16] Dong R X, Lei Q C, Chi Y Q et al. Analysis of global and local hydrodynamic instabilities on a high-speed jet diffusion flame via time-resolved 3D measurements[J]. Flow, Turbulence and Combustion, 107, 759-780(2021).

    [17] Gordon R, Herman G T. Reconstruction of pictures from their projections[J]. Communications of the ACM, 14, 759-768(1971).

    [18] Jiang M, Qu Z P, Sun Y. Limited-angle computed tomography reconstruction based on Mojette minimal redundancy coverage in frequency domain[J]. Acta Optica Sinica, 39, 0711001(2019).

    [19] Xu C C, Yang B, Guo F P et al. Sparse-view CBCT reconstruction via weighted Schatten p-norm minimization[J]. Optics Express, 28, 35469-35482(2020).

    [20] Gao H X, Luo L, Luo Y H et al. Improved stochastic CT reconstruction based on particle swarm optimization for limited-angle sparse projection data[J]. Acta Optica Sinica, 38, 0111003(2018).

    [21] Li X L, Fu H S, Song B L. Fluorescence diffuse optical tomography reconstruction based on group sparse regularization[J]. Laser & Optoelectronics Progress, 58, 0211002(2021).

    [22] Kim B, Han M, Shim H et al. A performance comparison of convolutional neural network-based image denoising methods: the effect of loss functions on low-dose CT images[J]. Medical Physics, 46, 3906-3923(2019).

    [23] Wang F, Wang H, Bian Y M et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 40, 0111002(2020).

    [24] Wang F, Bian Y M, Wang H C et al. Phase imaging with an untrained neural network[J]. Light: Science & Applications, 9, 77(2020).

    [25] Lim J, Ayoub A B, Psaltis D. Three-dimensional tomography of red blood cells using deep learning[J]. Advanced Photonics, 2, 026001(2020).

    [26] Zhou X, Jin Z B, Feng T et al. Bone mineral density value evaluation based on photoacoustic spectral analysis combined with deep learning method[J]. Chinese Optics Letters, 18, 041701(2020).

    [27] Dong D S, Shi K B. Solving the missing cone problem by deep learning[J]. Advanced Photonics, 2, 020501(2020).

    [28] Qiu T, Liu M J, Zhou G P et al. An unsupervised classification method for flame image of pulverized coal combustion based on convolutional auto-encoder and hidden Markov model[J]. Energies, 12, 2585(2019).

    [29] Huang J Q, Liu H C, Cai W W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning[J]. Journal of Fluid Mechanics, 875, R2(2019).

    [30] Wei C Y, Schwarm K K, Pineda D I et al. Deep neural network inversion for 3D laser absorption imaging of methane in reacting flows[J]. Optics Letters, 45, 2447-2450(2020).

    [31] Kaczmarz S. Angenaher teauflosung von systemen linearer gleichungen[J]. Bulletin de I' Academie Polonaise des Sciences et Lettres, 35, 355-357(1937).

    [32] Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 29, 471-481(1970).

    [33] Herman G T, Lent A, Lutz P H. Relaxation methods for image reconstruction[J]. Communications of the ACM, 21, 152-158(1978).

    [34] Zhou H C, Lou C, Cheng Q et al. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace[J]. Proceedings of the Combustion Institute, 30, 1699-1706(2005).

    [35] Yu T, Cai W W. Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy[J]. Applied Optics, 56, 2183-2194(2017).

    [36] Huang J Q, Liu H C, Dai J H et al. Reconstruction for limited-data nonlinear tomographic absorption spectroscopy via deep learning[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 218, 187-193(2018).

    [37] Huang J Q, Liu H C, Wang Q et al. Limited-projection volumetric tomography for time-resolved turbulent combustion diagnostics via deep learning[J]. Aerospace Science and Technology, 106, 106123(2020).

    Tools

    Get Citation

    Copy Citation Text

    Sunyong Zhu, Ying Jin, Quanying Wu, Haishan Liu, Guohai Situ. Hybrid-Convolution-Based Reconstruction for Limited-View Emission Spectrum Tomography[J]. Acta Optica Sinica, 2022, 42(13): 1315002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 19, 2021

    Accepted: Jan. 13, 2022

    Published Online: Jul. 15, 2022

    The Author Email: Jin Ying (yingjin@siom.ac.cn), Wu Quanying (wqycyh@mail.usts.edu.cn)

    DOI:10.3788/AOS202242.1315002

    Topics