Acta Geographica Sinica, Volume. 75, Issue 9, 1831(2020)

Analysis of sponge city system and research points from the perspective of urban water cycle

Moyuan YANG1... Changming LIU2, Xingyao PAN1 and Kang LIANG2 |Show fewer author(s)
Author Affiliations
  • 1Beijing Water Science and Technology Institute, Beijing 100048, China
  • 2Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • show less
    References(80)

    [1] [1] WangWenliang, LiJunqi, CheWu, et al. Explanation of sponge city development technical guide: Planning index for urban total runoff volume capture. China Water & Wastewater, 2015,31(8):18-23. [ 王文亮, 李俊奇, 车伍, 等. 海绵城市建设指南解读之城市径流总量控制指标. 中国给水排水, 2015,31(8):18-23.] [王文亮, 李俊奇, 车伍, 等. 海绵城市建设指南解读之城市径流总量控制指标. 中国给水排水, 2015, 31(8): 18-23.]

    [2] [2] LiJunqi, WangWenliang, CheWu, et al. Explanation of sponge city development technical guide: Regional division for total rainfall runoff volume capture target. China Water & Wastewater, 2015,31(8):6-12. [ 李俊奇, 王文亮, 车伍, 等. 海绵城市建设指南解读之降雨径流总量控制目标区域划分. 中国给水排水, 2015,31(8):6-12.] [李俊奇, 王文亮, 车伍, 等. 海绵城市建设指南解读之降雨径流总量控制目标区域划分. 中国给水排水, 2015, 31(8): 6-12.]

    [3] [3] CheWu, ZhaoYang, LiJunqi, et al. Explanation of sponge city development technical guide: Basic concepts and comprehensive goals. China Water & Wastewater, 2015,31(8):1-5. [ 车伍, 赵杨, 李俊奇, 等. 海绵城市建设指南解读之基本概念与综合目标. 中国给水排水, 2015,31(8):1-5.] [车伍, 赵杨, 李俊奇, 等. 海绵城市建设指南解读之基本概念与综合目标. 中国给水排水, 2015, 31(8): 1-5.]

    [4] [4] ZhangJianyun, WangYintang, HuQingfang, et al. Discussion and views on some issues of the sponage city construction in China. Advances in Water Science, 2016,27(6):793-799. [ 张建云, 王银堂, 胡庆芳, 等. 海绵城市建设有关问题讨论. 水科学进展, 2016,27(6):793-799.] [张建云, 王银堂, 胡庆芳, 等. 海绵城市建设有关问题讨论. 水科学进展, 2016, 27(6): 793-799.]

    [5] [5] ZuoQiting. Water science issues in sponge city construction. Water Resources Protection, 2016,32(4):21-26. [ 左其亭. 我国海绵城市建设中的水科学难题. 水资源保护, 2016,32(4):21-26.] [左其亭. 我国海绵城市建设中的水科学难题. 水资源保护, 2016, 32(4): 21-26.]

    [6] [6] WangHao, MeiChao, LiuJiahong. Systematic construction pattern of the sponge city. Journal of Hydraulic Engineering, 2017, 48(9):1009-1014+1022. [ 王浩, 梅超, 刘家宏. 海绵城市系统构建模式. 水利学报, 2017,48(9):1009-1014, 1022.] [王浩, 梅超, 刘家宏. 海绵城市系统构建模式. 水利学报, 2017, 48(9): 1009-1014, 1022.]

    [7] [7] XiaJun, ShiWei, WangQiang, et al. Discussion of several hydrological issues regarding sponge city construction. Water Resources Protection, 2017,33(1):1-8. [ 夏军, 石卫, 王强, 等. 海绵城市建设中若干水文学问题的研讨. 水资源保护, 2017,33(1):1-8.] [夏军, 石卫, 王强, 等. 海绵城市建设中若干水文学问题的研讨. 水资源保护, 2017, 33(1): 1-8.]

    [9] [9] LiuChangming, WangKaiwen. Discussions on the low impact development patterns and strategies of urban water ecological civilization construction. China Water Resources, 2016(19):1-4. [ 刘昌明, 王恺文. 城镇水生态文明建设低影响发展模式与对策探讨. 中国水利, 2016(19):1-4.] [刘昌明, 王恺文. 城镇水生态文明建设低影响发展模式与对策探讨. 中国水利, 2016(19): 1-4.]

    [10] [10] LiuChangming, ZhangYongyong, WangZhonggen, et al. The LID pattern for maintaining virtuous water cycle in urbanized area: A preliminary study of planninary study of planning and techniques for sponge city. Journal of Natural Resources, 2016,31(5):719-731. [ 刘昌明, 张永勇, 王中根, 等. 维护良性水循环的城镇化LID模式: 海绵城市规划方法与技术初步探讨. 自然资源学报, 2016,31(5):719-731.] [刘昌明, 张永勇, 王中根, 等. 维护良性水循环的城镇化LID模式: 海绵城市规划方法与技术初步探讨. 自然资源学报, 2016, 31(5): 719-731.]

    [11] [11] XuZongxue, ChengTao. Basic theory for urban water management and sponge city: Review on urban hydrology. Journal of Hydraulic Engineering, 2019,50(1):53-61. [ 徐宗学, 程涛. 城市水管理与海绵城市建设之理论基础: 城市水文学研究进展. 水利学报, 2019,50(1):53-61.] [徐宗学, 程涛. 城市水管理与海绵城市建设之理论基础: 城市水文学研究进展. 水利学报, 2019, 50(1): 53-61.]

    [12] [12] LiuWeidong, YouHuanling, RenGuoyu, et al. AWS preciptation characteristics based on k-means clustering method in Beijing area. Meteorological Monthly, 2014,40(7):844-851. [ 刘伟东, 尤焕苓, 任国玉, 等. 北京地区自动站降水特征的聚类分析. 气象, 2014,40(7):844-851.] [刘伟东, 尤焕苓, 任国玉, 等. 北京地区自动站降水特征的聚类分析. 气象, 2014, 40(7): 844-851.]

    [13] [13] XuGuanglai, XuYoupeng, XuHongliang. Advance in hydrologic process response to urbanization. Journal of Natural Resources, 2010,25(12):2171-2178.

    [14] [14] ZhouChangyan, CenSixuan, LiYueqing, et al. Precipitation variation and its impacts in sichuan in the last 50 years. Acta Geographica Sinica, 2011,66(5):619-630.

    [15] [15] ZhangJianyun, WangYintang, HeRuimin, et al. Discussion on the urban flood and waterlogging and causes analysis in China. Advances in Water Science, 2016,27(4):485-491. [ 张建云, 王银堂, 贺瑞敏, 等. 中国城市洪涝问题及成因分析. 水科学进展, 2016,27(4):485-491.] [张建云, 王银堂, 贺瑞敏, 等. 中国城市洪涝问题及成因分析. 水科学进展, 2016, 27(4): 485-491.]

    [17] [17] SunYanwei, WangWenchuan, WeiXiaomei, et al. Eco-hydrological impacts of urbanization. Advances in Water Science, 2012,23(4):569-574.

    [18] [18] SangYanfang, WangZhonggen, LiuChangming. Applications of wavelet analysis to hydrology: Status and prospects. Progress in Geography, 2013,32(9):1413-1422. [ 桑燕芳, 王中根, 刘昌明. 小波分析方法在水文学研究中的应用现状及展望. 地理科学进展, 2013,32(9):1413-1422.] [桑燕芳, 王中根, 刘昌明. 小波分析方法在水文学研究中的应用现状及展望. 地理科学进展, 2013, 32(9): 1413-1422.]

    [22] [22] YangMoyuan, PanXingyao, LiuHonglu, et al. Accurate calculation of the volume capture ratio of annual rainfall considering the field rainfall evolution. Journal of Hydraulic Engineering, 2019,50(12):1510-1517, 1528. [ 杨默远, 潘兴瑶, 刘洪禄, 等. 考虑场次降雨年际变化特征的年径流总量控制率准确核算. 水利学报, 2019,50(12):1510-1517, 1528.] [杨默远, 潘兴瑶, 刘洪禄, 等. 考虑场次降雨年际变化特征的年径流总量控制率准确核算. 水利学报, 2019, 50(12): 1510-1517, 1528.]

    [24] [24] QiuFuguo, ChenLixia. Research progress on contaminants removal from stormwater runoff by bioretention. Chinese Journal of Environmental Engineering, 2016,10(4):1593-1602. [ 仇付国, 陈丽霞. 雨水生物滞留系统控制径流污染物研究进展. 环境工程学报, 2016,10(4):1593-1602.] [仇付国, 陈丽霞. 雨水生物滞留系统控制径流污染物研究进展. 环境工程学报, 2016, 10(4): 1593-1602.]

    [25] [25] GeDe, ZhangShouhong. Impacts of vegetation on hydrological performances of green roofs under different rainfall conditions. Environmental Science, 2018,39(11):5015-5023.

    [26] [26] GuoPingting, WangJianlong, YangLiqiong, et al. Effect of bioretention media on pollutions removal from stormwater runoff. Environmental Science & Technology, 2016,39(3):60-67. [ 郭娉婷, 王建龙, 杨丽琼, 等. 生物滞留介质类型对径流雨水净化效果的影响. 环境科学与技术, 2016,39(3):60-67.] [郭娉婷, 王建龙, 杨丽琼, 等. 生物滞留介质类型对径流雨水净化效果的影响. 环境科学与技术, 2016, 39(3): 60-67.]

    [27] [27] LiJiake, LiuZengchao, HuangNingjun, et al. Advance in the study on bioretention technology for low-impact development. Arid Zone Research, 2014,31(3):431-439. [ 李家科, 刘增超, 黄宁俊, 等. 低影响开发(LID)生物滞留技术研究进展. 干旱区研究, 2014,31(3):431-439.] [李家科, 刘增超, 黄宁俊, 等. 低影响开发(LID)生物滞留技术研究进展. 干旱区研究, 2014, 31(3): 431-439.]

    [28] [28] MengYingying, WangHuixiao, ZhangShuhan, et al. Experiments on detention, retention and purifying effects of urban road runoff based on bioretention. Journal of Beijing Normal University (Natural Science), 2013,49(2/3):286-291. [ 孟莹莹, 王会肖, 张书函, 等. 基于生物滞留的城市道路雨水滞蓄净化效果试验研究. 北京师范大学学报(自然科学版), 2013,49(2/3):286-291.] [孟莹莹, 王会肖, 张书函, 等. 基于生物滞留的城市道路雨水滞蓄净化效果试验研究. 北京师范大学学报(自然科学版), 2013, 49(2/3): 286-291.]

    [29] [29] WangShumin, LiXingyang, ZhangJunhua, et al. Influence of green roof application on water quantity and quality in urban region. Chinese Journal of Applied Ecology, 2014,25(7):2026-2032.

    [30] [30] HouPeiqiang, WangXiaoke, ZhengFeixiang, et al. Research status of the characteristics of non-point source pollution in China. Water & Wastewater Engineering, 2009,35(S1):188-193. [ 侯培强, 王效科, 郑飞翔, 等. 我国城市面源污染特征的研究现状. 给水排水, 2009,35(增刊1):188-193.] [侯培强, 王效科, 郑飞翔, 等. 我国城市面源污染特征的研究现状. 给水排水, 2009, 35(增刊1): 188-193.]

    [31] [31] ZhangQianqian, LiXiangquan, WangXiaoke, et al. Research advance in the characterization and source apportionment of pollutants in urban roadway runoff. Ecology and Environmental Sciences, 2014,23(2):352-358. [ 张千千, 李向全, 王效科, 等. 城市路面降雨径流污染特征及源解析的研究进展. 生态环境学报, 2014,23(2):352-358.] [张千千, 李向全, 王效科, 等. 城市路面降雨径流污染特征及源解析的研究进展. 生态环境学报, 2014, 23(2): 352-358.]

    [32] [32] ZhangZhibin, MengQingyu, MaZheng. Study on pollution characteristics of urban non-point source pollution. Water & Wastewater Engineering, 2016,52(S1):163-167. [ 张志彬, 孟庆宇, 马征. 城市面源污染的污染特征研究. 给水排水, 2016,52(增刊1):163-167.] [张志彬, 孟庆宇, 马征. 城市面源污染的污染特征研究. 给水排水, 2016, 52(增刊1): 163-167.]

    [33] [33] LiuChangming, WangZhonggen, YangShengtian, et al. Hydro-informatic modeling system: Aiming at water cycle in land surface material and energy exchange processes. Acta Geographica Sinica, 2014,69(5):579-587.

    [34] [34] GuoHuimin, FanGuisheng. Relation between soil structure and the relative stable infiltration rate under the condition of surface water pressure infiltration. Journal of Irrigation and Drainage, 2009,28(6):104-106. [ 郭会敏, 樊贵盛. 有压入渗条件下土壤结构与相对稳定入渗率间的关系研究. 灌溉排水学报, 2009,28(6):104-106.] [郭会敏, 樊贵盛. 有压入渗条件下土壤结构与相对稳定入渗率间的关系研究. 灌溉排水学报, 2009, 28(6): 104-106.]

    [35] [35] LiHongxing, FanGuisheng. Experimental study on main factors influencing the infiltration capacity of unsaturated earth canal. Journal of Hydraulic Engineering, 2009,40(5):630-634. [ 李红星, 樊贵盛. 影响非饱和土渠床入渗能力主导因素的试验研究. 水利学报, 2009,40(5):630-634.] [李红星, 樊贵盛. 影响非饱和土渠床入渗能力主导因素的试验研究. 水利学报, 2009, 40(5): 630-634.]

    [36] [36] LiHongxing, FanGuisheng. The quantitative relation of stable infiltration rates between the pressured and non-pressured water infiltration in unsaturated soils. Journal of Irrigation and Drainage, 2010,29(2):17-21. [ 李红星, 樊贵盛. 非饱和土壤有压和无压入渗稳定入渗率间的关系研究. 灌溉排水学报, 2010,29(2):17-21.] [李红星, 樊贵盛. 非饱和土壤有压和无压入渗稳定入渗率间的关系研究. 灌溉排水学报, 2010, 29(2): 17-21.]

    [38] [38] WangQuanjiu, ShaoMing'an, WangZhirong, et al. Application of green ampt equation during infiltration in layered soil. Journal of Soil Erosion and Soil and Water Conservation, 1999,5(4):66-70. [ 王全九, 邵明安, 汪志荣, 等. Green-Ampt公式在层状土入渗模拟计算中的应用. 土壤侵蚀与水土保持学报, 1999,5(4):66-70.] [王全九, 邵明安, 汪志荣, 等. Green-Ampt公式在层状土入渗模拟计算中的应用. 土壤侵蚀与水土保持学报, 1999, 5(4): 66-70.]

    [42] [42] XiongDinghui, LiuSuxia, MoXingguo. Numerical difference in soil water between vertically stratified and homogenized soil profiles. Chinese Journal of Eco-Agriculture, 2018,26(4):593-603. [ 熊丁晖, 刘苏峡, 莫兴国. 土壤垂向分层和均匀处理下水分差异的数值探讨. 中国生态农业学报, 2018,26(4):593-603.] [熊丁晖, 刘苏峡, 莫兴国. 土壤垂向分层和均匀处理下水分差异的数值探讨. 中国生态农业学报, 2018, 26(4): 593-603.]

    [43] [43] YangMoyuan, ZhangShuhan, PanXingyao. Monitoring and evaluation of green roof runoff reduction effect. China Water & Wastewater, 2019,35(15):134-138. [ 杨默远, 张书函, 潘兴瑶. 绿色屋顶径流减控效果的监测分析. 中国给水排水, 2019,35(15):134-138.] [杨默远, 张书函, 潘兴瑶. 绿色屋顶径流减控效果的监测分析. 中国给水排水, 2019, 35(15): 134-138.]

    [44] [44] WangQian, ZhangQionghua, WangXiaochang. Cumulative characteristics of runoff pollutants in typical domestic cities. China Environmental Science, 2015,35(6):1719-1725. [ 王倩, 张琼华, 王晓昌. 国内典型城市降雨径流初期累积特征分析. 中国环境科学, 2015,35(6):1719-1725.] [王倩, 张琼华, 王晓昌. 国内典型城市降雨径流初期累积特征分析. 中国环境科学, 2015, 35(6): 1719-1725.]

    [45] [45] ZhangWenting, WangMingze, SongDanyang, et al. Study on spatial distribution of non-point source pollution in the process of rainfall runoff. Environmental Science & Technology, 2015,38(10):153-160. [ 张文婷, 王铭泽, 宋丹阳, 等. 降雨径流过程的非点源污染时空动态分布研究. 环境科学与技术, 2015,38(10):153-160.] [张文婷, 王铭泽, 宋丹阳, 等. 降雨径流过程的非点源污染时空动态分布研究. 环境科学与技术, 2015, 38(10): 153-160.]

    [48] [48] GaoFeng, LinHuanhuan, DengHongwei. Numerical simulation of contaminant transport in heterogeneous aquifer under heavy rainfall. Environmental Science & Technology, 2017,40(11):59-66. [ 高峰, 蔺欢欢, 邓红卫. 强降雨条件下非均匀介质污染物运移数值模拟. 环境科学与技术, 2017,40(11):59-66.] [高峰, 蔺欢欢, 邓红卫. 强降雨条件下非均匀介质污染物运移数值模拟. 环境科学与技术, 2017, 40(11): 59-66.]

    [49] [49] HuWeixian, HeWenhua, HuangGuoru, et al. Review of urban storm water simulation techniques. Advances in Water Science, 2010,21(1):137-144.

    [50] [50] WangTong, DingXiang, CaiTian, et al. Influence of routing methods on outflow of SWMM model. China Water & Wastewater, 2018,34(15):133-138. [ 王彤, 丁祥, 蔡甜, 等. 水力演算方法对SWMM模型排放口出流的影响. 中国给水排水, 2018,34(15):133-138.] [王彤, 丁祥, 蔡甜, 等. 水力演算方法对SWMM模型排放口出流的影响. 中国给水排水, 2018, 34(15): 133-138.]

    [51] [51] FuBowen, JinPengkang, ShiShan, et al. Sediment characteristics of sewer network in Xi'an city. China Water & Wastewater, 2018,34(17):119-122, 127. [ 付博文, 金鹏康, 石山, 等. 西安市污水管网中沉积物特性研究. 中国给水排水, 2018,34(17):119-122, 127.] [付博文, 金鹏康, 石山, 等. 西安市污水管网中沉积物特性研究. 中国给水排水, 2018, 34(17): 119-122, 127.]

    [52] [52] GanLili. A study on urban rainwater runoff pollution control and quantitative sewer pipe defect assessment[D]. Beijing: Tsinghua University, 2012. [ 干里里. 城市雨水径流污染控制与排水管道缺损状况量化评价研究[D]. 北京: 清华大学, 2012.] [干里里. 城市雨水径流污染控制与排水管道缺损状况量化评价研究[D]. 北京: 清华大学, 2012.]

    [53] [53] WangRui, LiZhi, LiuYufei, et al. Study on reformation and optimization of urban drainage system based on SWMM. Water Resources and Hydropower Engineering, 2018,49(1):60-69. [ 王芮, 李智, 刘玉菲, 等. 基于SWMM的城市排水系统改造优化研究. 水利水电技术, 2018,49(1):60-69.] [王芮, 李智, 刘玉菲, 等. 基于SWMM的城市排水系统改造优化研究. 水利水电技术, 2018, 49(1): 60-69.]

    [54] [54] DongLuyan, ZhaoDongquan, LiuXiaomei, et al. Performance assessment system for drainage systems based on monitoring and modeling technology. China Water & Wastewater, 2014,30(17):150-154. [ 董鲁燕, 赵冬泉, 刘小梅, 等. 基于监测和模拟技术的排水管网性能评估体系. 中国给水排水, 2014,30(17):150-154.] [董鲁燕, 赵冬泉, 刘小梅, 等. 基于监测和模拟技术的排水管网性能评估体系. 中国给水排水, 2014, 30(17): 150-154.]

    [55] [55] GuoXiaochen, LiMeng, ShiXiaoyu, et al. Research and application of warning technology for drainage network accidents based on on-line monitoring. China Water & Wastewater, 2018,34(19):129-133. [ 郭效琛, 李萌, 史晓雨, 等. 基于在线监测的排水管网事故预警技术研究与应用. 中国给水排水, 2018,34(19):129-133.] [郭效琛, 李萌, 史晓雨, 等. 基于在线监测的排水管网事故预警技术研究与应用. 中国给水排水, 2018, 34(19): 129-133.]

    [56] [56] ZhouYunfeng. Sensitive parameters identification and multi-objective optimization calibration of SWMM drainage pipe network model[D]. Hangzhou: Zhejiang University, 2018. [ 周云峰. SWMM排水管网模型灵敏参数识别与多目标优化率定研究[D]. 杭州: 浙江大学, 2018.] [周云峰. SWMM排水管网模型灵敏参数识别与多目标优化率定研究[D]. 杭州: 浙江大学, 2018.]

    [57] [57] LvHeng, NiGuangheng, TianFuqiang. Impacts of drainage pipe network complexity on urban stormwater modeling. Journal of Hydroelectric Engineering, 2018,37(11):97-106. [ 吕恒, 倪广恒, 田富强. 排水管网结构概化对城市暴雨洪水模拟的影响. 水力发电学报, 2018,37(11):97-106.] [吕恒, 倪广恒, 田富强. 排水管网结构概化对城市暴雨洪水模拟的影响. 水力发电学报, 2018, 37(11): 97-106.]

    [58] [58] WangJiabiao, ZhaoJianshi, ShenZiyin, et al. Discussion about the two rainfall control approaches in sponge city construction. Journal of Hydraulic Engineering, 2017,48(12):1490-1498. [ 王家彪, 赵建世, 沈子寅, 等. 关于海绵城市两种降雨控制模式的讨论. 水利学报, 2017,48(12):1490-1498.] [王家彪, 赵建世, 沈子寅, 等. 关于海绵城市两种降雨控制模式的讨论. 水利学报, 2017, 48(12): 1490-1498.]

    [59] [59] LiJunqi, LinXiang. The influence of extreme rainfall events on the total runoff control rate and the 24h rainfall field control rate was analyzed. Water & Wastewater Engineering, 2018,44(1):21-26. [ 李俊奇, 林翔. 极端降雨事件对雨水年径流总量控制率和24 h降雨场次控制率的影响规律探析. 给水排水, 2018,44(1):21-26.] [李俊奇, 林翔. 极端降雨事件对雨水年径流总量控制率和24 h降雨场次控制率的影响规律探析. 给水排水, 2018, 44(1): 21-26.]

    [60] [60] ZhangYuhang, YangMoyuan, PanXingyao, et al. Influence of rainfall division method on capture ratio of rainfall. China Water &Wastewater, 2019,35(13):122-127. [ 张宇航, 杨默远, 潘兴瑶, 等. 降雨场次划分方法对降雨控制率的影响分析. 中国给水排水, 2019,35(13):122-127.] [张宇航, 杨默远, 潘兴瑶, 等. 降雨场次划分方法对降雨控制率的影响分析. 中国给水排水, 2019, 35(13): 122-127.]

    [61] Jiang Y, Zevenbergen C, Ma Y. Urban pluvial flooding and stormwater management: A contemporary review of China's challenges and "sponge cities" strategy[J]. Environmental Science & Policy, 80, 132-143(2018).

    [64] [64] WangWenliang, WangErsong, JiaNan, et al. Discussion on design method of overflow storage capacity and treatment facility scale of combined sewer system based on model simulation. Water & Wastewater Engineering, 2018,54(10):31-34. [ 王文亮, 王二松, 贾楠, 等. 基于模型模拟的合流制溢流调蓄与处理设施规模设计方法探讨. 给水排水, 2018,54(10):31-34.] [王文亮, 王二松, 贾楠, 等. 基于模型模拟的合流制溢流调蓄与处理设施规模设计方法探讨. 给水排水, 2018, 54(10): 31-34.]

    [65] [65] ZhaoZekun, CheWu, ZhaoYang, et al. Summary comparison of combined sewer overflow control between China and the United States. Water & Wastewater Engineering, 2018,54(11):128-134. [ 赵泽坤, 车伍, 赵杨, 等. 中美合流制溢流污染控制概要比较. 给水排水, 2018,54(11):128-134.] [赵泽坤, 车伍, 赵杨, 等. 中美合流制溢流污染控制概要比较. 给水排水, 2018, 54(11): 128-134.]

    [66] [66] ZhaoZekun, CheWu, ZhaoYang, et al. Experiences of combination of gray-green infrastructure for combined sewer overflow control in the United States. China Water & Wastewater, 2018,34(20):36-41. [ 赵泽坤, 车伍, 赵杨, 等. 美国合流制溢流污染控制灰绿设施结合的经验. 中国给水排水, 2018,34(20):36-41.] [赵泽坤, 车伍, 赵杨, 等. 美国合流制溢流污染控制灰绿设施结合的经验. 中国给水排水, 2018, 34(20): 36-41.]

    [68] Mailhot A, Talbot G, Lavallée B. Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences[J]. Journal of Hydrology, 523, 602-609(2015).

    [69] Vivoni E R, Moreno H A, Mascaro G et al. Observed relation between evapotranspiration and soil moisture in the North American monsoon region[J]. Geophysical Research Letters, 35, 659-662(2008).

    [71] Brown R A, Borst M. Quantifying evaporation in a permeable pavement system[J]. Hydrological Processes, 29, 2100-2111(2015).

    [72] [72] XiaoRongbo, OuyangZhiyun, LiWeifeng, et al. A review of the eco-environmental consequences of urban heat islands. Acta Ecologica Sinica, 2005,25(8):2055-2060. [ 肖荣波, 欧阳志云, 李伟峰, 等. 城市热岛的生态环境效应. 生态学报, 2005,25(8):2055-2060.] [肖荣波, 欧阳志云, 李伟峰, 等. 城市热岛的生态环境效应. 生态学报, 2005, 25(8): 2055-2060.]

    [73] Mao X, Jia H, Shaw L Y. Assessing the ecological benefits of aggregate LID-BMPs through modelling[J]. Ecological Modelling, 353, 139-149(2017).

    [74] [74] LiDingqiang, LiuJiahua, YuanZaijian, et al. Research advance and prospects on low impact development control measures for urban non-point source pollution. Ecology and Environmental Sciences, 2019,28(10):2110-2118. [ 李定强, 刘嘉华, 袁再健, 等. 城市低影响开发面源污染治理措施研究进展与展望. 生态环境学报, 2019,28(10):2110-2118.] [李定强, 刘嘉华, 袁再健, 等. 城市低影响开发面源污染治理措施研究进展与展望. 生态环境学报, 2019, 28(10): 2110-2118.]

    [75] [75] ZhaoYinbing, CaiTingting, SunRanhao, et al. Review on sponge city research: From hydrological process to ecological restoration. Acta Ecologica Sinica, 2019,39(13):4638-4646. [ 赵银兵, 蔡婷婷, 孙然好, 等. 海绵城市研究进展综述: 从水文过程到生态恢复. 生态学报, 2019,39(13):4638-4646.] [赵银兵, 蔡婷婷, 孙然好, 等. 海绵城市研究进展综述: 从水文过程到生态恢复. 生态学报, 2019, 39(13): 4638-4646.]

    [76] [76] HuQingfang, WangYintang, LiLingjie, et al. Preliminary comparison between water-ecological civilization city and sponge city. Water Resources Protection, 2017,33(5):13-18. [ 胡庆芳, 王银堂, 李伶杰, 等. 水生态文明城市与海绵城市的初步比较. 水资源保护, 2017,33(5):13-18.] [胡庆芳, 王银堂, 李伶杰, 等. 水生态文明城市与海绵城市的初步比较. 水资源保护, 2017, 33(5): 13-18.]

    [77] [77] LiLan, LiFeng. The key scientific issues and thinking on the construction of "Sponge City". Acta Ecologica Sinica, 2018,38(7):2599-2606. [ 李兰, 李锋. “海绵城市”建设的关键科学问题与思考. 生态学报, 2018,38(7):2599-2606.] [李兰, 李锋. “海绵城市”建设的关键科学问题与思考. 生态学报, 2018, 38(7): 2599-2606.]

    [78] [78] TengYanguo, ZuoRui, SuXiaosi, et al. Technique for assessing environmental risk of regional groundwater. Research of Environmental Sciences, 2014,27(12):1532-1539. [ 滕彦国, 左锐, 苏小四, 等. 区域地下水环境风险评价技术方法. 环境科学研究, 2014,27(12):1532-1539.] [滕彦国, 左锐, 苏小四, 等. 区域地下水环境风险评价技术方法. 环境科学研究, 2014, 27(12): 1532-1539.]

    [79] [79] WangXingchao. Application of underground reservoirs in construction of sponge cities. Advances in Science and Technology of Water Resources, 2018,38(1):83-87. [ 王兴超. 地下水库在海绵城市建设中的应用. 水利水电科技进展, 2018,38(1):83-87.] [王兴超. 地下水库在海绵城市建设中的应用. 水利水电科技进展, 2018, 38(1): 83-87.]

    [80] [80] ZhouDong. Interrelationship analysis of formation properties and water storage and drainage function in construction of sponge city[D]. Beijing: University of Science and Technology Beijing, 2017. [ 周栋. 海绵城市建设中地层特性与蓄排水功能的相互关系研究[D]. 北京: 北京科技大学, 2017.] [周栋. 海绵城市建设中地层特性与蓄排水功能的相互关系研究[D]. 北京: 北京科技大学, 2017.]

    Tools

    Get Citation

    Copy Citation Text

    Moyuan YANG, Changming LIU, Xingyao PAN, Kang LIANG. Analysis of sponge city system and research points from the perspective of urban water cycle[J]. Acta Geographica Sinica, 2020, 75(9): 1831

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 27, 2019

    Accepted: --

    Published Online: Apr. 14, 2021

    The Author Email:

    DOI:10.11821/dlxb202009002

    Topics