Laser & Optoelectronics Progress, Volume. 60, Issue 17, 1700001(2023)

Survey of Signal Recovery Technique in Few-Mode Fiber Communication System with Strong Mode Coupling

Jianyu Long, Bing Zhang, Xiongwei Yang, and Jianjun Yu*
Author Affiliations
  • Key Laboratory of EMW Information, Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China
  • show less
    References(94)

    [1] Essiambre R J, Kramer G, Winzer P J et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 28, 662-701(2010).

    [2] Winzer P J, Neilson D T. From scaling disparities to integrated parallelism: a decathlon for a decade[J]. Journal of Lightwave Technology, 35, 1099-1115(2017).

    [3] Li G F, Bai N, Zhao N B et al. Space-division multiplexing: the next frontier in optical communication[J]. Advances in Optics and Photonics, 6, 413-487(2014).

    [4] Sillard P, Bigot-Astruc M, Molin D. Few-mode fibers for mode-division-multiplexed systems[J]. Journal of Lightwave Technology, 32, 2824-2829(2014).

    [5] Antonelli C, Golani O, Shtaif M et al. Propagation effects in few-mode fibers[C](2017).

    [6] Ho K P, Kahn J M. Mode coupling and its impact on spatially multiplexed systems[M]. Kaminow I P, Li T, Willner A E. Optical fiber telecommunications, 491-568(2013).

    [7] Arik S Ö, Askarov D, Kahn J M. Effect of mode coupling on signal processing complexity in mode-division multiplexing[J]. Journal of Lightwave Technology, 31, 423-431(2013).

    [8] Ferreira F, Sygletos S, Ellis A. Impact of linear mode coupling on the group delay spread in few-mode fibers[C](2015).

    [9] Schulze C, Brüning R, Schröter S et al. Mode coupling in few-mode fibers induced by mechanical stress[J]. Journal of Lightwave Technology, 33, 4488-4496(2015).

    [10] Ferreira F M, Costa C S, Sygletos S et al. Semi-analytical modelling of linear mode coupling in few-mode fibers[J]. Journal of Lightwave Technology, 35, 4011-4022(2017).

    [11] Liu F. Research on impairment measurement and fault detection technology for few-mode fiber[D](2019).

    [12] Ho K P, Kahn J M. Statistics of group delays in multimode fiber with strong mode coupling[J]. Journal of Lightwave Technology, 29, 3119-3128(2011).

    [13] Ip E, Milione G, Huang Y K et al. Impact of mode-dependent loss on long-haul transmission systems using few-mode fibers[C](2016).

    [14] Ho K P, Kahn J M. Mode-dependent loss and gain: statistics and effect on mode-division multiplexing[J]. Optics Express, 19, 16612-16635(2011).

    [15] Lobato A, Ferreira F, Kuschnerov M et al. Impact of mode coupling on the mode-dependent loss tolerance in few-mode fiber transmission[J]. Optics Express, 20, 29776-29783(2012).

    [16] Lobato A, Ferreira F, Rabe J et al. On the mode-dependent loss compensation for mode-division multiplexed systems[C](2013).

    [17] Ali A A I, El-Fiqi A E, El-Sahn Z A et al. Analytical formula of nonlinear interference in few-mode fibers in strong coupling regime[C](2015).

    [18] Xiao Y Z, Essiambre R J, Desgroseilliers M et al. Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers[J]. Optics Express, 22, 32039-32059(2014).

    [19] Ferreira F M, Suibhne N M, Sánchez C et al. Advantages of strong mode coupling for suppression of nonlinear distortion in few-mode fibers[C], Tu2E.3(2016).

    [20] Krummrich P M, Brehler M, Rademacher G et al. Nonlinear impairment scaling in multi mode fibers for mode division multiplexing[J]. Journal of Lightwave Technology, 39, 927-932(2021).

    [21] Liu Y P, Yang Z Q, Wang X T et al. Gain equalization for few-mode erbium-doped fiber amplifiers via strong mode coupling[J]. Applied Sciences, 12, 767(2022).

    [22] Li J, Fontaine N K, Chen H et al. Design and demonstration of mode scrambler supporting 10 modes using multiplane light conversion[C](2018).

    [23] Liu Y P, Jung Y, Yang Z Q et al. Wideband and low-loss mode scrambler for few-mode fibers based on distributed multiple point-loads[J]. IEEE Photonics Journal, 13, 7100907(2021).

    [24] Randel S, Ryf R, Sierra A et al. 6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization[J]. Optics Express, 19, 16697-16707(2011).

    [25] Bai N, Li G F. Adaptive frequency-domain equalization for mode-division multiplexed transmission[J]. IEEE Photonics Technology Letters, 24, 1918-1921(2012).

    [26] Wang Y Q, Fang W L, Tao L et al. Research of multiple-input multiple-output(MIMO) technique in multimode fiber links[J]. Laser & Optoelectronics Progress, 48, 100601(2011).

    [27] Awwad E, Othman G R B, Jaouën Y. Space-time coding schemes for MDL-impaired mode-multiplexed fiber transmission systems[J]. Journal of Lightwave Technology, 33, 5084-5094(2015).

    [28] Weng Y, He X, Yao W et al. Investigation of adaptive filtering and MDL mitigation based on space-time block-coding for spatial division multiplexed coherent receivers[J]. Optical Fiber Technology, 36, 231-236(2017).

    [29] Kontik M, Ergen S C. Scheduling in successive interference cancellation based wireless ad hoc networks[J]. IEEE Communications Letters, 19, 1524-1527(2015).

    [30] Shen D, Zhao D, Li Q et al. Dynamically adjusted order successive interference cancellation algorithm for massive multiple input multiple output[J]. Laser & Optoelectronics Progress, 59, 1107004(2022).

    [31] Zhang T, Li L, Hu G J. Demultiplexing of mode-division multiplexing system based on successive interference cancellation[J]. Chinese Journal of Lasers, 46, 0306001(2019).

    [32] Lobato A, Ferreira F, Inan B et al. Maximum-likelihood detection in few-mode fiber transmission with mode-dependent loss[J]. IEEE Photonics Technology Letters, 25, 1095-1098(2013).

    [33] Arik S Ö, Askarov D, Kahn J M. MIMO DSP complexity in mode-division multiplexing[C](2015).

    [34] Randel S, Winzer P J, Montoliu M et al. Complexity analysis of adaptive frequency-domain equalization for MIMO-SDM transmission[C], 801-803(2013).

    [35] Shibahara K, Mizuno T, Lee D et al. DMD-unmanaged long-haul SDM transmission over 2500-km 12-core×3-mode MC-FMF and 6300-km 3-mode FMF employing intermodal interference canceling technique[J]. Journal of Lightwave Technology, 37, 138-147(2019).

    [36] Mori T, Sakamoto T, Wada M et al. Few-mode fiber for mode-division-multiplexed transmission with MIMO DSP[C], AW3C.1(2013).

    [37] Sillard P. Next-generation fibers for space-division-multiplexed transmissions[J]. Journal of Lightwave Technology, 33, 1092-1099(2015).

    [38] Zhang T. Research on compensation technology for mode division multiplexing system with MDL[D](2019).

    [39] Zhang Y Y. Research on novel few-mode fibers for short-reach mode division multiplexing communication systems[D](2021).

    [40] Palmieri L. Coupling mechanism in multimode fibers[J]. Proceedings of SPIE, 9009, 90090G(2014).

    [41] Ho K P, Kahn J M. Delay-spread distribution for multimode fiber with strong mode coupling[J]. IEEE Photonics Technology Letters, 24, 1906-1909(2012).

    [42] Winzer P J, Foschini G J. MIMO capacities and outage probabilities in spatially multiplexed optical transport systems[J]. Optics Express, 19, 16680-16696(2011).

    [43] Ferreira F M, Suibhne N M, Sánchez C et al. Suppression of nonlinear distortion in few-mode fibres using strong mode coupling[C], 41-45(2016).

    [44] Zhang S X. Research on equalization technology in few mode fiber mode division multiplexing systems[D](2018).

    [45] Liu Y J. Research on key technology of mode multiplexing in large capacity optical fiber transmission system[D](2017).

    [46] Zhao H Y. The research on link analyses and signal processing for mode division multiplexing system in few-mode fiber[D](2015).

    [47] Li L. The research on PM-MDM technology and MIMO equalization method in multimode fiber[D](2016).

    [48] Gruner-Nielsen L, Sun Y, Nicholson J W et al. Few mode transmission fiber with low DGD, low mode coupling, and low loss[J]. Journal of Lightwave Technology, 30, 3693-3698(2012).

    [49] He X, Zhou X, Wang J Y et al. A fast convergence frequency domain least Mean Square algorithm for compensation of differential mode group delay in few mode fibers[C], OM2C.4(2013).

    [50] Hsu R C J, Shah A, Jalali B. Coherent optical multiple-input multiple-output communication[J]. IEICE Electronics Express, 1, 392-397(2004).

    [51] Shah A R, Hsu R C J, Tarighat A et al. Coherent optical MIMO (COMIMO)[J]. Journal of Lightwave Technology, 23, 2410-2419(2005).

    [52] Li A, Amin A A, Chen X et al. Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signal over a two-mode fiber[C], PDPB8(2011).

    [53] Salsi M, Koebele C, Sperti D et al. Transmission at 2×100 Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS-based mode multiplexer and demultiplexer[C](2011).

    [54] Ryf R, Randel S, Gnauck A H et al. Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing[C], PDPB10(2011).

    [55] Ip E, Bai N, Huang Y K et al. 88×3×112-Gb/s WDM transmission over 50 km of three-mode fiber with inline few mode fiber amplifier[C], Th.13.C.2(2011).

    [56] Koebele C, Salsi M, Milord L et al. 40km transmission of five mode division multiplexed data streams at 100 Gb/s with low MIMO-DSP complexity[C](2011).

    [57] Ryf R, Randel S, Gnauck A H et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing[J]. Journal of Lightwave Technology, 30, 521-531(2012).

    [58] Ip E, Bai N, Huang Y K et al. 6 × 6 MIMO transmission over 50+25+10 km heterogeneous spans of few-mode fiber with inline erbium-doped fiber amplifier[C], OTu2C.4(2012).

    [59] Randel S, Ryf R, Gnauck A H et al. Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber[C](2012).

    [60] Ryf R, Mestre M A, Randel S et al. Mode-multiplexed transmission over a 209-km DGD-compensated hybrid few-mode fiber span[J]. IEEE Photonics Technology Letters, 24, 1965-1968(2012).

    [61] Sleiffer V A J M, Jung Y, Veljanovski V et al. 73.7 Tb/s (96×3×256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA[J]. Optics Express, 20, B428-B438(2012).

    [62] Ryf R, Fontaine N K, Mestre M A et al. 12×12 MIMO transmission over 130-km few-mode fiber[C], FW6C.4(2012).

    [63] Ryf R, Randel S, Fontaine N K et al. 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber[C], PDP5A.1(2013).

    [64] Ip E, Li M J, Bennett K et al. 146λ×6×19 Gbaud wavelength and mode division multiplexed transmission over 10×50 km spans of few mode fiber with a gain equalized few mode EDFA[J]. Journal of Lightwave Technology, 32, 790-797(2014).

    [65] Chen Y K, Lobato A, Jung Y et al. 41.6 Tbit/s C-band SDM OFDM transmission through 12 spatial and polarization modes over 74.17 km few mode fiber[J]. Journal of Lightwave Technology, 33, 1440-1444(2015).

    [66] Shibahara K, Lee D, Kobayashi T et al. Dense SDM (12-core×3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-eomain equalization[J]. Journal of Lightwave Technology, 34, 196-204(2016).

    [67] Rademacher G, Ryf R, Fontaine N K et al. 3500-km mode-multiplexed transmission through a three-mode graded-index few-mode fiber link[C](2017).

    [68] van Weerdenburg J, Ryf R, Alvarado-Zacarias J C et al. 138-Tb/s mode- and wavelength-multiplexed transmission over six-mode graded-index fiber[J]. Journal of Lightwave Technology, 36, 1369-1374(2018).

    [69] Mizuno T, Shibahara K, Ono H et al. Long-distance PDM-32QAM 3-mode fibre transmission over 1000 km using hybrid multicore EDFA/Raman repeated amplification with cyclic mode permutation[C](2018).

    [70] Shibahara K, Mizuno T, Lee D et al. Iterative unreplicated parallel interference canceler for MDL-tolerant dense SDM (12-core×3-mode) transmission over 3000 km[J]. Journal of Lightwave Technology, 37, 1560-1569(2019).

    [71] Shibahara K, Mizuno T, Kawakami H et al. Full C-band 3060-km DMD-unmanaged 3-mode transmission with 40.2-Tb/s capacity using cyclic mode permutation[J]. Journal of Lightwave Technology, 38, 514-521(2020).

    [72] van Uden R G H, Okonkwo C M, Sleiffer V A J M et al. MIMO equalization with adaptive step size for few-mode fiber transmission systems[J]. Optics Express, 22, 119-126(2014).

    [73] He X, Weng Y, Wang J et al. Fast convergent frequency-domain MIMO equalizer for few-mode fiber communication systems[J]. Optics Communications, 409, 131-136(2018).

    [74] Fazea Y, Sajat M S, Ahmad A et al. Channel optimization in mode division multiplexing using neural networks[C], 173-175(2018).

    [75] Poudel B, Oshima J, Kobayashi H et al. MIMO detection using a deep learning neural network in a mode division multiplexing optical transmission system[J]. Optics Communications, 440, 41-48(2019).

    [76] El Gamal H, Damen M O. Universal space-time coding[J]. IEEE Transactions on Information Theory, 49, 1097-1119(2003).

    [77] Hei Y Q, Li W T, Xu X C et al. Orthogonal STBC for MDL mitigation in mode division multiplexing system with MMSE channel estimation[J]. Journal of Lightwave Technology, 35, 1858-1867(2017).

    [78] Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogonal designs[J]. IEEE Transactions on Information Theory, 45, 1456-1467(1999).

    [79] Damen M O, El Gamal H, Beaulieu N C. Linear threaded algebraic space-time constellations[J]. IEEE Transactions on Information Theory, 49, 2372-2388(2003).

    [80] Li L. Research on MIMO detection techniques in MDM systems[D](2018).

    [81] Amhoud E M, Othman G R B, Jaouën Y. Design criterion of space-time codes for SDM optical fiber systems[C](2016).

    [82] Xin Y C, Tian Y, Hua B et al. Mode-interleaving method with improved transmission reach for MDL-impaired MDM systems[C], AF2A.99(2016).

    [83] Jaouën Y, Amhoud E M, Othman G R B. Optical MIMO techniques for MDL mitigation in few-mode fiber transmission systems[C], ATh2C.3(2016).

    [84] Shibahara K, Mizuno T, Takara H et al. Space-time coding-assisted transmission for mitigation of MDL impact on mode-division multiplexed signals[C], Th4C.4(2016).

    [85] Amhoud E M, Othman G R B, Jaouën Y. Concatenation of space-time coding and FEC for few-mode fiber systems[J]. IEEE Photonics Technology Letters, 29, 603-606(2017).

    [86] Damen O, Othman G R B. Near-optimal detection of TAST codes over multimode optical fiber channels[C](2018).

    [87] Damen O, Rekaya-Ben Othman G. On the performance of spatial modulations over multimode optical fiber transmission channels[J]. IEEE Transactions on Communications, 67, 3470-3481(2019).

    [88] Hei Y Q, Li L, Song W T et al. Hybrid IRS and DFE detection scheme for MDL-impaired transmission with TAST coding[J]. Journal of Lightwave Technology, 37, 4251-4259(2019).

    [89] Awwad E, Othman G R B, Jaouën Y. Space-time coding and optimal scrambling for mode multiplexed optical fiber systems[C], 5228-5234(2015).

    [90] El Mehdi A, Jaouen Y, Rekaya Ben-Othman G. Joint space-time coding and FEC for MDL mitigation in few-mode fiber systems[C], JTu4A.35(2016).

    [91] Amhoud E M, Othman G R B, Bigot L et al. Experimental demonstration of space-time coding for MDL mitigation in few-mode fiber transmission systems[C](2017).

    [92] Studer C, Fateh S, Seethaler D. ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interference cancellation[J]. IEEE Journal of Solid-State Circuits, 46, 1754-1765(2011).

    [93] Shibahara K, Mizuno T, Miyamoto Y. LDPC-coded FMF transmission employing unreplicated successive interference cancellation for MDL-impact mitigation[C](2017).

    [94] Shibahara K, Mizuno T, Miyamoto Y. Interference cancelling techniques for long-haul MIMO-SDM transmission[C], SpW1G.4(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jianyu Long, Bing Zhang, Xiongwei Yang, Jianjun Yu. Survey of Signal Recovery Technique in Few-Mode Fiber Communication System with Strong Mode Coupling[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1700001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Oct. 19, 2022

    Accepted: Dec. 12, 2022

    Published Online: Sep. 1, 2023

    The Author Email: Yu Jianjun (jianjun@fudan.edu.cn)

    DOI:10.3788/LOP222826

    Topics