Journal of Innovative Optical Health Sciences, Volume. 5, Issue 2, 1250006(2012)
ENERGY FEATURE EXTRACTION AND SVM CLASSIFICATION OFMOTORIMAGERY-INDUCED ELECTROENCEPHALOGRAMS
[1] [1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland et al., "Brain-computer interfaces for communication and control," Clin. Neurophysiol. 113, 767 (2002).
[2] [2] J. Kroneg, G. Chanel, S. Voloshynovskiy et al., "EEG-based synchronized brain-computer interfaces: A model for optimizing the number of mental tasks," IEEE Trans. Neural Syst. Rehab. Eng. 15, 50 (2007).
[3] [3] G. Pfurtscheller, "EEG event-related desynchronization and event-related synchronization," Electroenceph. Clin. Neurophysiol. 103, 26 (1997).
[4] [4] G. Xiaojing, W. Xiaopei, Z. Dexiang, "Motor imagery EEG detection by empirical mode decomposition," IEEE Int. Joint Conf. Neural Networks, IEEE World Congress on Computational Intelligence (2008).
[5] [5] N. E. Huang, Z. Shen, S. R. Long, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. Royal Soc. London Series 454, 903 (1998).
[6] [6] V. N. Vapnik, Statistical Learning Theory (John Wiley & Sons, New York, 1998).
[7] [7] Available from: http://www.csie.ntu.edu.tw/~cjlin/ libsvm/.
[8] [8] V. Cherkassky, Y. Ma, "Practical selection of SVM parameters and noise estimation for SVM regression," Neural Networks 17, 113 (2004).
[9] [9] Available from: http://ida.first.fraunhofer.de/projects/ bci/competition iii/.
[10] [10] C.-L. Yeh, H.-C. Chang, C.-H. Wu, P.-L. Lee, "Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition," BioMedical Engineering [Online] (2010).
[11] [11] V. Jeyabalan, A. Samraj, L. C. Kiong, "Motor imaginary signal classification using adaptive recursive bandpass filter and adaptive autoregressive models for brain machine interface designs," Int. J. Biol. Life Sci. 3, 2 (2007).
[12] [12] X. Baoguo, S. Aiguo, "Feature extraction and classification of single trial motor imagery EEG," J. Southeast Univ. 37(4), (2007).
[13] [13] H. Jianfeng, M. Zhendong, X. Dan, "Classification of motor imagery EEG signals based on energy entropy," Computer Eng. Appl. 44(33), 235-238 (2008).
[14] [14] V. Jeyabalan, A. Samraj, L. C. Kiong, "Classification of motor imaginary signals for machine communication," Int. Conf. Signal Acquisition and Processing (2009).
[15] [15] G. Pfurtscheller, C. Brunner, A. Schl€ogl, "Mu rhythm (de)synchronization and EEG singletrial classification of different motor imagery tasks," NeuroImage 31, 153 (2006).
Get Citation
Copy Citation Text
JIANING ZHENG, LIYU HUANG, JING ZHAO. ENERGY FEATURE EXTRACTION AND SVM CLASSIFICATION OFMOTORIMAGERY-INDUCED ELECTROENCEPHALOGRAMS[J]. Journal of Innovative Optical Health Sciences, 2012, 5(2): 1250006
Received: Feb. 19, 2012
Accepted: --
Published Online: Jan. 10, 2019
The Author Email: HUANG LIYU (huangly@mail.xidian.edu.cn)