Acta Optica Sinica, Volume. 42, Issue 17, 1723001(2022)

High Speed Structured Light Devices and Their Applications in Optical Imaging and Measurement

Yuxuan Ma, Zhaokui Meng, Hongxu Huang, and Mingjie Sun*
Author Affiliations
  • School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • show less
    References(121)

    [1] Lechner B J, Marlowe F J, Nester E O et al. Liquid crystal matrix displays[J]. Proceedings of the IEEE, 59, 1566-1579(1971).

    [2] Meyer R A. Optical beam steering using a multichannel lithium tantalate crystal[J]. Applied Optics, 11, 613-616(1972).

    [3] Logie B J. Apparatus for transmitting views or images to a distance[P].

    [4] Olsen F O, Gong H, Bagger C. CO2 laser beam caustic measument with focal spot analyser[C](2005).

    [5] Shelefontyuk D I. A mechanical light chopper based on a hard disk drive for systems of laser sounding of the atmosphere[J]. Instruments and Experimental Techniques, 54, 414-417(2011).

    [6] Kawashima S, Shishido H, Oshita S et al. 18-5: a 1058-ppi 4K ultrahigh-resolution and high aperture LCD with transparent pixels using OS/OC technology[J]. SID Symposium Digest of Technical Papers, 48, 242-245(2017).

    [7] Qian W Z. Short guide to the display devices[J]. Journal of Computer Applications, 26, 1963-1967, 1971(2006).

    [8] Fan F, Yao L S, Wang X Q et al. Ferroelectric liquid crystal Dammann grating by patterned photoalignment[J]. Crystals, 7, 79(2017).

    [9] Hanaoka K, Katayama T, Higashida S et al. 13-2: novel pixel design in‐plane super‐fast response (ip‐SFR) LCD for smartphone and PC monitor[J]. SID Symposium Digest of Technical Papers, 50, 164-167(2019).

    [10] Wu S T, Wu C S. High speed nematic liquid crystal modulators[J]. Molecular Crystals and Liquid Crystals, 207, 1-15(1991).

    [11] Sampsell J B. Digital micromirror device and its application to projection displays[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 12, 3242-3246(1994).

    [12] Dudley D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications[J]. Proceedings of SPIE, 4985, 14-25(2003).

    [13] Ren Y X, Lu R D, Gong L. Tailoring light with a digital micromirror device[J]. Annalen Der Physik, 527, 447-470(2015).

    [14] Hornbeck L J. Current status of the digital micromirror device (DMD) for projection television applications[C], 381-384(1993).

    [16] Chandrasekaran S N, Ligtenberg H, Steenbergen W et al. Using digital micromirror devices for focusing light through turbid media[J]. Proceedings of SPIE, 8979, 897905(2014).

    [17] Doherty D, Hewlett G. Pulse width modulation control in DLP projectors[J]. TI Technical Journal, 15, 115-121(1998).

    [18] Hueck K, Mazurenko A, Luick N et al. Note: suppression of kHz-frequency switching noise in digital micro-mirror devices[J]. Review of Scientific Instruments, 88, 016103(2017).

    [19] Scholes S, Kara R, Pinnell J et al. Structured light with digital micromirror devices: a guide to best practice[J]. Optical Engineering, 59, 041202(2019).

    [20] Narag J P C, Zambale N A F, Hermosa N. Scale distortion correction of a digital micromirror device using diffraction caustics[J]. Optics and Lasers in Engineering, 134, 106122(2020).

    [21] Zhang Y J, Surman P, He S L. A resolution-enhanced digital micromirror device (DMD) projection system[J]. IEEE Access, 9, 78153-78164(2021).

    [22] Ning C Z. Semiconductor nanolasers and the size-energy-efficiency challenge: a review[J]. Advanced Photonics, 1, 014002(2019).

    [23] Shen C C, Hsu T C, Yeh Y W et al. Design, modeling, and fabrication of high-speed VCSEL with data rate up to 50 Gb/s[J]. Nanoscale Research Letters, 14, 276(2019).

    [24] Li R X, Hu S T, Gu X D et al. Solid-state slow-light beam scanner with ultra-large field of view and high resolution[J]. Journal of Lightwave Technology, 40, 1855-1861(2022).

    [25] Guo X, Graff J W, Schubert E F. Photon-recycling for high brightness LEDs[J]. Compound Semiconductor, 6, 1-4(2000).

    [26] Huang Y G, Hsiang E L, Deng M Y et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives[J]. Light: Science & Applications, 9, 105(2020).

    [27] Tian P F, McKendry J J D, Gong Z et al. Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates[J]. Journal of Applied Physics, 115, 033112(2014).

    [28] Tian C, Guo S X, Liang J Q et al. Effects of unit size on current density and illuminance of micro-LED-array[J]. Optoelectronics Letters, 13, 84-89(2017).

    [29] Lan H Y, Tseng I C, Lin Y H et al. High-speed integrated micro-LED array for visible light communication[J]. Optics Letters, 45, 2203-2206(2020).

    [30] Joo W J, Kyoung J, Esfandyarpour M et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch[J]. Science, 370, 459-463(2020).

    [31] Park C I, Seong M, Kim M A et al. World's first large size 77-inch transparent flexible OLED display[J]. Journal of the Society for Information Display, 26, 287-295(2018).

    [32] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Advances in Optics and Photonics, 8, 200-227(2016).

    [33] Engström D, O’Callaghan M J, Walker C et al. Fast beam steering with a ferroelectric-liquid-crystal optical phased array[J]. Applied Optics, 48, 1721-1726(2009).

    [34] Linnenberger A, Serati S, Stockley J. Advances in optical phased array technology[J]. Proceedings of SPIE, 6304, 63040T(2006).

    [35] Xun X D, Cho D J, Cohn R W. Spiking voltages for faster switching of nematic liquid-crystal light modulators[J]. Applied Optics, 45, 3136-3143(2006).

    [36] Yan J, Li Y, Wu S T. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal[J]. Optics Letters, 36, 1404-1406(2011).

    [37] Dayton D, Browne S, Gonglewski J et al. Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction[J]. Applied Optics, 40, 2345-2355(2001).

    [38] Qi M J, Wang Q D, Mu Q Q et al. Study of response time depending on driving voltage of liquid crystal spatial light modulator[J]. Laser & Optoelectronics Progress, 50, 092302(2013).

    [39] Cai D M, Xue L X, Ling N et al. Characteristics of phase only liquid crystal spatial light modulator[J]. Opto-Electronic Engineering, 34, 19-23(2007).

    [40] Harris S R. Numerical optimization of the performance of nematic liquid crystal optical phased arrays[J]. Proceedings of SPIE, 5162, 157-171(2003).

    [41] Goldring D, Zalevsky Z, Goldenberg E et al. Optical characteristics of the compound PLZT[J]. Applied Optics, 42, 6536-6543(2003).

    [42] Thomas J A, Fainman Y. Optimal cascade operation of optical phased-array beam deflectors[J]. Applied Optics, 37, 6196-6212(1998).

    [43] Dong Z R, Ye Q, Qu R H et al. Optical phased-array beam deflector based on lead lanthanum zirconate titanate electro-optic ceramic[J]. Chinese Journal of Lasers, 35, 373-377(2008).

    [44] van Acoleyen K, Bogaerts W, Jágerská J et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator[J]. Optics Letters, 34, 1477-1479(2009).

    [45] Zhao C, Peng C, Hu W W. Blueprint for large-scale silicon optical phased array using electro-optical micro-ring pixels[J]. Scientific Reports, 7, 17727(2017).

    [46] Sun J, Timurdogan E, Yaacobi A et al. Large-scale nanophotonic phased array[J]. Nature, 493, 195-199(2013).

    [47] Abediasl H, Hashemi H. Monolithic optical phased-array transceiver in a standard SOI CMOS process[J]. Optics Express, 23, 6509-6519(2015).

    [48] Poulton C V, Byrd M J, Moss B et al. 8192-element optical phased array with 100° steering range and flip-chip CMOS[C](2020).

    [49] Corrigan R W, Amm D T, Gudeman C S. Grating light valve technology for projection displays[C], 757-760(1998).

    [50] Payne A, Myatt G, Hunter J et al. An 8192-channel grating light valve for ultra-violet direct write lithography[C], 188-189(2012).

    [51] Murthy S, Anish S V, Sundaravadivelu S. Overview and applications of Grating Light Valve™ based image acquisition and projection display system[C], 296-300(2015).

    [52] Tzang O, Niv E, Singh S et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform[J]. Nature Photonics, 13, 788-793(2019).

    [53] Cho J, Santhanam S, Le T et al. Design, fabrication, switching, and optical characteristics of new magneto-optic spatial light modulator[J]. Journal of Applied Physics, 76, 1910-1919(1994).

    [54] Aoshima K I, Funabashi N, Machida K et al. Submicron magneto-optical spatial light modulation device for holographic displays driven by spin-polarized electrons[J]. Journal of Display Technology, 6, 374-380(2010).

    [55] Schwartz A, Wang X Y, Warde C. Electron-beam-addressed microchannel spatial light modulator[J]. Optical Engineering, 24, 241119(1985).

    [56] Tian B, van Etten W, Beuwer W. Ultrafast all-optical shift register and its perspective application for optical fast packet switching[J]. IEEE Journal of Selected Topics in Quantum Electronics, 8, 722-728(2002).

    [57] Li J J, Nie X M, Li G S et al. Comparison and research progress of flat panel display technology[J]. Chinese Optics, 11, 695-710(2018).

    [58] Fung K, Waller C, Eisenbrandt E et al. 32.1: invited paper: Q-view: a compression technology for UHD resolution, low power, and low cost LCOS panels[J]. SID Symposium Digest of Technical Papers, 50, 342-344(2019).

    [59] Chen X X, Li G Y, Wang J M et al. Liquid crystal multi-layer 3D display system and algorithm design[J]. Chinese Journal of Liquid Crystals and Displays, 32, 302-307(2017).

    [60] Bao X Z, Liang J Q, Liang Z Z et al. Design and fabrication of AlGaInP-based micro-light-emitting-diode array devices[J]. Optics & Laser Technology, 78, 34-41(2016).

    [61] Kubota S R. The grating light valve projector[J]. Optics and Photonics News, 13, 50-53(2002).

    [62] Kikuchi H, Hashimoto S, Tajiri S et al. High-pixel-rate grating-light-valve laser projector[J]. Journal of the Society for Information Display, 17, 263-269(2009).

    [63] Neil M A, Juskaitis R, Wilson T. Method of obtaining optical sectioning by using structured light in a conventional microscope[J]. Optics Letters, 22, 1905-1907(1997).

    [64] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [65] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).

    [66] Kner P, Chhun B B, Griffis E R et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 6, 339-342(2009).

    [67] Huang X S, Fan J C, Li L J et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy[J]. Nature Biotechnology, 36, 451-459(2018).

    [68] Guo Y T, Li D, Zhang S W et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales[J]. Cell, 175, 1430-1442(2018).

    [69] Dan D, Lei M, Yao B L et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy[J]. Scientific Reports, 3, 1116(2013).

    [70] Descloux A, Müller M, Navikas V et al. High-speed multiplane structured illumination microscopy of living cells using an image-splitting prism[J]. Nanophotonics, 9, 143-148(2019).

    [71] Liao J L, Liu L N, Chen T G et al. Comparison of two- and three-beam interference pattern generation in structured illumination microscopy[J]. Photonics, 8, 526(2021).

    [72] Franch N, Canals J, Moro V et al. Towards a super-resolution structured illumination microscope based on an array of nanoLEDs[J]. Proceedings of SPIE, 11105, 110050O(2019).

    [73] Helle Ø I, Dullo F T, Lahrberg M et al. Structured illumination microscopy using a photonic chip[J]. Nature Photonics, 14, 431-438(2020).

    [74] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).

    [75] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).

    [76] Shi D F, Feng W, Huang J et al. Compressed polarimetric ghost imaging of different material′s reflective objects[J]. Optical Review, 22, 882-887(2015).

    [77] Song L J, Zhou C, Chen L et al. Demonstration of single pixel computational ghost imaging with pseudo-randomly patterned illumination from a liquid crystal display[J]. Proceedings of SPIE, 10141, 101411G(2016).

    [78] Zhang Z B, Su Z J, Deng Q W et al. Lensless single-pixel imaging by using LCD: application to small-size and multi-functional scanner[J]. Optics Express, 27, 3731-3745(2019).

    [79] Takhar D, Laska J N, Wakin M B et al. A new compressive imaging camera architecture using optical-domain compression[J]. Proceedings of SPIE, 6065, 43-52(2006).

    [80] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).

    [81] Phillips D B, Sun M J, Taylor J M et al. Adaptive foveated single-pixel imaging with dynamic supersampling[J]. Science Advances, 3, e1601782(2017).

    [82] Zhang Z B, Wang X Y, Zheng G A et al. Fast Fourier single-pixel imaging via binary illumination[J]. Scientific Reports, 7, 12029(2017).

    [83] Komatsu K, Ozeki Y, Nakano Y et al. Ghost imaging using integrated optical phased array[C](2017).

    [84] Kohno Y, Komatsu K, Tang R et al. Ghost imaging using a large-scale silicon photonic phased array chip[J]. Optics Express, 27, 3817-3823(2019).

    [85] Li L J, Chen W, Zhao X Y et al. Fast optical phased array calibration technique for random phase modulation LiDAR[J]. IEEE Photonics Journal, 11, 6900410(2019).

    [86] Huang H X, Li L J, Ma Y X et al. 25, 000 fps computational ghost imaging with ultrafast structured illumination[J]. Electronic Materials, 3, 93-100(2022).

    [87] Guo W B, Zhang Q C, Wu Z J. Real-time three-dimensional imaging technique based on phase-shift fringe analysis: a review[J]. Laser & Optoelectronics Progress, 58, 0800001(2021).

    [88] Meadows D M, Johnson W O, Allen J B. Generation of surface contours by moiré patterns[J]. Applied Optics, 9, 942-947(1970).

    [89] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 22, 3977-3982(1983).

    [90] Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects[J]. Applied Optics, 23, 3105-3108(1984).

    [91] Huang P S, Zhang C P, Chiang F P. High-speed 3-D shape measurement based on digital fringe projection[J]. Optical Engineering, 42, 163-168(2003).

    [92] Zhang S, Huang P S. High-resolution, real-time three-dimensional shape measurement[J]. Optical Engineering, 45, 123601(2006).

    [93] Griesser A, Koninckx T P, van Gool L. Adaptive real-time 3D acquisition and contour tracking within a multiple structured light system[C], 361-370(2004).

    [94] Gong Y Z, Zhang S. Ultrafast 3-D shape measurement with an off-the-shelf DLP projector[J]. Optics Express, 18, 19743-19754(2010).

    [95] Grosse M, Buehl J, Babovsky H et al. 3D shape measurement of macroscopic objects in digital off-axis holography using structured illumination[J]. Optics Letters, 35, 1233-1235(2010).

    [96] Wissmann P, Forster F, Schmitt R. Fast and low-cost structured light pattern sequence projection[J]. Optics Express, 19, 24657-24671(2011).

    [97] Heist S, Mann A, Kühmstedt P et al. Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement[J]. Optical Engineering, 53, 112208(2014).

    [98] Heist S, Lutzke P, Dietrich P et al. Experimental comparison of laser speckle projection and array projection for high-speed 3D measurements[J]. Proceedings of SPIE, 9525, 282-289(2015).

    [99] Hyun J S, Chiu G T C, Zhang S. High-speed and high-accuracy 3D surface measurement using a mechanical projector[J]. Optics Express, 26, 1474-1487(2018).

    [100] Zuo C, Tao T Y, Feng S J et al. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10, 000 frames per second[J]. Optics and Lasers in Engineering, 102, 70-91(2018).

    [101] Li R X, Hu S T, Gu X D et al. Demonstration of real-time structured-light depth sensing based on a solid-state VCSEL beam scanner[J]. Optics Express, 30, 364-376(2021).

    [102] Huang X, Bai J, Wang K W et al. Target enhanced 3D reconstruction based on polarization-coded structured light[J]. Optics Express, 25, 1173-1184(2017).

    [103] Zhu Z M, Xie Y L, Cen Y G. Polarized-state-based coding strategy and phase image estimation method for robust 3D measurement[J]. Optics Express, 28, 4307-4319(2020).

    [104] Zhu Z M, You D D, Zhou F Q et al. Rapid 3D reconstruction method based on the polarization-enhanced fringe pattern of an HDR object[J]. Optics Express, 29, 2162-2171(2021).

    [105] McManamon P. Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology[J]. Optical Engineering, 51, 060901(2012).

    [106] Stone W C, Juberts M, Dagalakis N et al. Performance analysis of next-generation LADAR for manufacturing, construction, and mobility[R](2004).

    [107] Goodman J W[M]. Introduction to Fourier optics(1969).

    [108] Smith B, Hellman B, Gin A et al. Single chip lidar with discrete beam steering by digital micromirror device[J]. Optics Express, 25, 14732-14745(2017).

    [109] Hellman B, Luo C, Chen G H et al. Single-chip holographic beam steering for lidar by a digital micromirror device with angular and spatial hybrid multiplexing[J]. Optics Express, 28, 21993-22011(2020).

    [110] Wu L, Wang X R, Xiong C D et al. Polarization-independent two-dimensional beam steering using liquid crystal optical phased arrays[J]. Chinese Optics Letters, 15, 101601(2017).

    [111] Poulton C V, Yaacobi A, Cole D B et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays[J]. Optics Letters, 42, 4091-4094(2017).

    [112] Poulton C V, Russo P, Timurdogan E et al. High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR[C], ATu3R.2(2018).

    [113] Poulton C V, Byrd M J, Russo P et al. Long-range LiDAR and free-space data communication with high-performance optical phased arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 7700108(2019).

    [114] Fujioka I, Li R X, Ho Z et al. Time of flight 3D imaging using VCSEL beam scanner[C], 88-89(2019).

    [115] Fujioka I, Ho Z, Gu X D et al. Solid state LiDAR with sensing distance of over 40 m using a VCSEL beam scanner[C], SM2M.4(2020).

    [116] Zhou Z Y, Dong X Z, Zheng M L. Evolution and application of digital micromirror device based maskless photolithography[J]. Laser & Optoelectronics Progress, 59, 0922030(2022).

    [117] Bertsch A, Zissi S, Jézéquel J Y et al. Microstereophotolithography using a liquid crystal display as dynamic mask-generator[J]. Microsystem Technologies, 3, 42-47(1997).

    [118] Jeon C W, Gu E, Dawson M D. Mask-free photolithographic exposure using a matrix-addressable micropixellated AlInGaN ultraviolet light-emitting diode[J]. Applied Physics Letters, 86, 221105(2005).

    [119] Sun C, Fang N, Wu D M et al. Projection micro-stereolithography using digital micro-mirror dynamic mask[J]. Sensors and Actuators A: Physical, 121, 113-120(2005).

    [120] Zhong K J, Gao Y Q, Li F et al. Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD[J]. Optics & Laser Technology, 56, 367-371(2014).

    [121] Dinh D H, Chien H L, Lee Y C. Maskless lithography based on digital micromirror device (DMD) and double sided microlens and spatial filter array[J]. Optics & Laser Technology, 113, 407-415(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yuxuan Ma, Zhaokui Meng, Hongxu Huang, Mingjie Sun. High Speed Structured Light Devices and Their Applications in Optical Imaging and Measurement[J]. Acta Optica Sinica, 2022, 42(17): 1723001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Mar. 9, 2022

    Accepted: Apr. 27, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Sun Mingjie (mingjie.sun@buaa.edu.cn)

    DOI:10.3788/AOS202242.1723001

    Topics