Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2349(2023)
Design and Performance Modulation of Photocatalytic Materials
[1] [1] SHINDELL D, SMITH C J. Climate and air-quality benefits of a realistic phase-out of fossil fuels[J]. Nature, 2019, 573(7774): 408-411.
[2] [2] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[3] [3] BAI S, JIANG J, ZHANG Q, et al. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations[J]. Chem Soc Rev, 2015, 44(10): 2893-2939.
[4] [4] LI X R, CHEN Y, TAO Y, et al. Challenges of photocatalysis and their coping strategies[J]. Chem Catal, 2022, 2(6): 1315-1345.
[5] [5] LOW J, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Adv Mater, 2017, 29(20): 1601694.
[6] [6] TACHIBANA Y, VAYSSIERES L, DURRANT J R. Artificial photosynthesis for solar water-splitting[J]. Nat Photonics, 2012, 6(8): 511-518.
[7] [7] BAI S, ZHANG N, GAO C, et al. Defect engineering in photocatalytic materials[J]. Nano Energy, 2018, 53: 296-336.
[8] [8] ZHANG P, WANG T, GONG J L. Current mechanistic understanding of surface reactions over water-splitting photocatalysts[J]. Chem, 2018, 4(2): 223-245.
[9] [9] RAN J R, ZHANG J, YU J G, et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J]. Chem Soc Rev, 2014, 43(22): 7787-7812.
[10] [10] LIU T Y, MA X L, YANG L F, et al. Highly enhanced photocatalytic activity of CaSn(OH)6 through tuning CaSn(OH)6/SnO2 heterostructural interaction and optimizing Fe3+ doping concentration[J]. Appl Catal B Environ, 2017, 217: 256-264.
[11] [11] DONG P Y, LIU B, WANG Y H, et al. Enhanced photocatalytic activity of (Mo, C)-codoped anatase TiO2 nanoparticles for degradation of methyl orange under simulated solar irradiation[J]. J Mater Res, 2010, 25(12): 2392-2400.
[12] [12] DONG P Y, WANG Y H, LIU B, et al. Photocatalytic activity of (B, N)-codoped titanate nanotubes[J]. J Am Ceram Soc, 2012, 95(1): 82-84.
[13] [13] YANG Y J, WANG Y H, YIN S. Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity[J]. Appl Surf Sci, 2017, 420: 399-406.
[14] [14] YANG L F, YANG Y J, LIU T Y, et al. Oxygen vacancies confined in SnO2 nanoparticles for glorious photocatalytic activities from the UV, visible to near-infrared region[J]. New J Chem, 2018, 42(18): 15253-15262.
[15] [15] XIAO M, WANG Z L, LYU M Q, et al. Hollow nanostructures for photocatalysis: advantages and challenges[J]. Adv Mater, 2019, 31(38): e1801369.
[16] [16] XIA M Y, ZHAO X L, ZHANG Y G, et al. Rational catalyst design for spatial separation of charge carriers in a multi-component photocatalyst for effective hydrogen evolution[J]. J Mater Chem A, 2022, 10(48): 25380-25405.
[17] [17] ZHAO F, ZHANG N, LI H, et al. Photocatalyst with chloroplast-like structure for enhancing hydrogen evolution reaction[J]. Energy Environ Mater, 2022, 5(4): 1229-1237.
[18] [18] ZHAO F, LAW Y L, ZHANG N, et al. Constructing spatially separated cage-like Z-scheme heterojunction photocatalyst for enhancing photocatalytic H2 evolution[J]. Small, 2023, 19(23): e2208266.
[19] [19] ZHAO F, LI H, LIU T Y, et al. Spatially separated CdS hollow spheres with interfacial charge transfer and cocatalyst for enhancing photocatalytic hydrogen evolution[J]. Mol Catal, 2019, 474: 110418.
[20] [20] ZHANG X C, LIU T Y, ZHAO F, et al. In-situ-formed Cd and Ag2S decorated CdS photocatalyst with boosted charge carrier spatial separation for enhancing UV-vis-NIR photocatalytic hydrogen evolution[J]. Appl Catal B Environ, 2021, 298: 120620.
[21] [21] MA X L, ZHAO F, QIANG Q P, et al. Fabrication of selective interface of ZnO/CdS heterostructures for more efficient photocatalytic hydrogen evolution[J]. Dalton Trans, 2018, 47(35): 12162-12171.
[22] [22] CAO B C, DONG P Y, CAO S, et al. BiOCl/Ag3PO4 composites with highly enhanced ultraviolet and visible light photocatalytic performances[J]. J Am Ceram Soc, 2013, 96(2): 544-548.
[23] [23] LIU T Y, LIU B, YANG L F, et al. RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability[J]. Appl Catal B Environ, 2017, 204: 593-601.
[24] [24] DONG P Y, WANG Y H, CAO B C, et al. Ag3PO4/reduced graphite oxide sheets nanocomposites with highly enhanced visible light photocatalytic activity and stability[J]. Appl Catal B Environ, 2013, 132-133: 45-53.
[25] [25] ZHANG N, LIU T Y, ZHAO F, et al. The band engineering of 2D-hybridized PCN-Sb2MoO6-Bi2O3 nanomaterials with dual Z-scheme heterojunction for enhanced photocatalytic water splitting without sacrificial agents[J]. Sustainable Energy Fuels, 2021, 5(8): 2325-2334.
[26] [26] GUO B R, LIU B, WANG C L, et al. S-scheme Ti0.7Sn0.3O2/g-C3N4 heterojunction composite for enhanced photocatalytic pollutants degradation[J]. J Environ Chem Eng, 2022, 10(2): 107118.
[27] [27] GUO B R, LIU B, ZHANG X Q, et al. In2S3 nanosheets growing on sheet-like g-C3N4 as high-performance photocatalyst for H2 evolution under visible light[J]. Int J Energy Res, 2022, 46(7): 9138-9149.
[28] [28] LIU T Y, ZHANG X Q, ZHAO F, et al. Targeting inside charge carriers transfer of photocatalyst: selective deposition of Ag2O on BiVO4 with enhanced UV-vis-NIR photocatalytic oxidation activity[J]. Appl Catal B Environ, 2019, 251: 220-228.
[29] [29] DONG P Y, WANG Y H, LI H H, et al. Shape-controllable synthesis and morphology-dependent photocatalytic properties of Ag3PO4 crystals[J]. J Mater Chem A, 2013, 1(15): 4651-4656.
[30] [30] LI H, ZHAO F, LIU T Y, et al. Design of novel structured Au/g-C3N4 nanosheet/reduced graphene oxide nanocomposites for enhanced visible light photocatalytic activities[J]. Sustainable Energy Fuels, 2020, 4(8): 4086-4095.
[31] [31] LI H H, YIN S, WANG Y H, et al. Persistent fluorescence-assisted TiO2-xNy-based photocatalyst for gaseous acetaldehyde degradation[J]. Environ Sci Technol, 2012, 46(14): 7741-7745.
[33] [33] LI H H, YIN S, WANG Y H, et al. Efficient persistent photocatalytic decomposition of nitrogen monoxide over a fluorescence-assisted CaAl2O4: (Eu, Nd)/(Ta, N)-codoped TiO2/Fe2O3[J]. Appl Catal B Environ, 2013, 132-133: 487-492.
[34] [34] LI H H, YIN S, WANG Y H, et al. Roles of Cr3+ doping and oxygen vacancies in SrTiO3 photocatalysts with high visible light activity for NO removal[J]. J Catal, 2013, 297: 65-69.
Get Citation
Copy Citation Text
WANG Yuhua, ZHAO Fei. Design and Performance Modulation of Photocatalytic Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2349
Category:
Received: May. 5, 2023
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Yuhua WANG (wyh@lzu.edu.cn)
CSTR:32186.14.