Piezoelectrics & Acoustooptics, Volume. 42, Issue 6, 837(2020)
Current Progress of Integrated Lithium Niobate Photonic Device Technology
[1] [1] KSTERS M, STURMAN B, WERHEIT P, et al. Optical cleaning of congruent lithium niobate crystals[J]. Nature Photonics, 2009, 3: 510-513.
[2] [2] SIMESA A Z, ZAGHETE M A, STOJANOVIC B D, et al. LiNbO3 thin films prepared through polymeric precursor method[J]. Materials Letters, 2003, 57: 2333- 2339.
[3] [3] LEVY M, OSGOOD R M, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Appl Phys Lett, 1998, 73(16):2293-2295.
[4] [4] RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Appl Phys Lett, 2004, 85(20): 4603-4605.
[5] [5] NAKATA Y, GUNJI S, OKADA T, et al. Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties[J]. Appl Phys A 79, 2004, 79(416):1279-1282.
[6] [6] RABIEI P, GUNTER P. Sub-micron thin films of lithium niobate single crystals prepared by crystal ion slicing and wafer bonding[C]//Baltimore, Maryland, USA: Conference on Lasers and Electro-Optics, 2005: 235-237.
[7] [7] POBERAJ G, HU Hui. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser Photonics Reviews, 2012, 6(4): 488-503.
[8] [8] HAN Huangpu, CAI Lutong, HU Hui. Optical and structural properties of single-crystal lithium niobate thin film[J]. Optical Materials, 2015, 42:47-51.
[9] [9] GONG Songbin, SHI Lisha, PIAZZA G. High electromechanical coupling MEMS resonators at 530 MHz using ion sliced X-cut LiNbO3 thin film[C]//Montreal, Quebec City, Canada: IEEE/MTT-S International Microwave Symposium Digest, 2012:17-22.
[10] [10] MOULET J S, PIJOLAT M, DECHAMP J, et al. High piezoelectric properties in LiNbO3 transferred layer by the smart cut(TM) technology for ultra-wide band BAW filter applications[C]//San Francisco, California, USA: IEEE International Electron Devices Meeting, 2008: 15-17.
[11] [11] SADAKA M, RADU I, CHRYSTELLE L B, et al. Smart stacking(TM) and smart cut(TM) technologies for wafer level 3D integration[C]//Pavia, Italy: Proceedings of 2013 International Conference on IC Design & Technology (ICICDT), IEEE, 2013: 29-31.
[12] [12] RADU I, NGUYEN B Y, GWELTAZ G, et al. 3D monolithic integration: stacking technology and applications[C]//Leuven, Belgium: IEEE International Conference on International Conference on IC Design & Technology (ICICDT), 2015: 1-3.
[13] [13] LI Chen, NAGY J, REANO R M. Patterned ion-sliced lithium niobate for hybrid photonic integration on silicon[J]. Optical Materials Express, 2016, 6(7):2460-2467.
[14] [14] BRUNET L, FENOUILLET-BERANGER C, BATUDE P, et al. Breakthroughs in 3D sequential technology[C]//San Francisco, California, USA: IEEE International Electron Devices Meeting (IEDM), 2018: 1-5.
[15] [15] BURROWS L. Now entering, lithium niobate valley[EB/OL]. (2017-12-17)[2020-06-12].https://www.sciencedaily.com/releases/2017/12/171221133650.htmsk
[16] [16] BRUEL M. Silicon on insulator material technology[J]. Electronics Letters, 1995, 31(14): 1201-1202.
[17] [17] LEVY M, OSGOOD R M, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Appl Phys Lett, 1998, 73(16):2293-2295.
[18] [18] WANG Cheng, ZHANG Mian, CHEN Xi, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562:101-104.
[19] [19] WEIGEL P O, ZHAO Jie, FANG K, et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth[J]. Optics Express, 2018, 26(18):23728-23739.
[20] [20] WANG Xiaoxi, WEIGEL P O, ZHAO Jie, et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate[J].APL Photonics, 2019, 4(9):1-8.
[21] [21] SUN Shihao, HE Mingbo. 120 Gb·s-1 hybrid silicon and lithium niobate modulators with on-chip termination resistor[C]//San Diego, California, United States:Optical Fiber Communication Conference, 2020.
[22] [22] HIGGINBOTHAM A P, BURNS P S, URMEY M D, et al. Harnessing electro-optic correlations in an efficient mechanical converter[J]. Nature Physics, 2018, 14:1038-1042.
[23] [23] JIANG Wentao, PATEL R N, MAYOR F M, et al. Lithium niobate piezo-optomechanical crystals[J].Optica, 2019, 6(7):845-853.
[24] [24] FORSCH M, STOCKILL R, WALLUCKS A, et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state[J]. Nature Physics, 2020, 16:69-74.
[25] [25] SHAO Linbo, YU Mengjie, MAITY S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 2019, 6(12):1498-1505.
[26] [26] ZHANG Mian, BUSCAINO B, WANG Cheng, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568:373-377.
[27] [27] WEIGEL P O, SAVANIER M, DEROSE C T, et al. Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics[J]. Nature Science Reports, 2016, 6:1-9.
Get Citation
Copy Citation Text
ZHANG Tao, HE Jie, HU Shaoqin, XU Xin, ZHANG Yulei. Current Progress of Integrated Lithium Niobate Photonic Device Technology[J]. Piezoelectrics & Acoustooptics, 2020, 42(6): 837
Received: Jun. 17, 2020
Accepted: --
Published Online: Apr. 21, 2022
The Author Email: