Journal of Advanced Dielectrics, Volume. 14, Issue 5, 2350029(2024)

Dual nitrogen-sulfur-doping induce microwave absorption and EMI shielding in nanocomposites based on graphene

Tienah H. H. Elagib1...2,*, Nassereldeen A. Kabbashi1, Md Zahangir Alam1, Elwathig A. M. Hassan1, Mohamed E. S. Mirghani1 and Nour Hamid Abdurahman3 |Show fewer author(s)
Author Affiliations
  • 1Department of Chemical Engineering and Sustainability, International Islamic University Malaysia, Jalan Gombak 53100, Kuala Lumpur, Malaysia
  • 2Department of Materials Engineering, University of Gezira, Address Wad Madani, Gezira State 21111, Sudan
  • 3Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, 26660 Pahang, Malaysia
  • show less
    References(70)

    [1] Q. Wang, B. Niu, Y. Han, Q. Zheng, L. Li, M. Cao. Nature-inspired 3D hierarchical structured “vine” for efficient microwave attenuation and electromagnetic energy conversion device. Chem. Eng. J., 452, 139042(2023).

    [2] Q. Zheng, J. Wang, M. Yu, W.-Q. Cao, H. Zhai, M.-S. Cao. Heterodimensional structure porous nanofibers embedded confining magnetic nanocrystals for electromagnetic functional material and device. Carbon, 210, 118049(2023).

    [3] X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang, J. Han, Z. Lou, C. Ma, S. Jiang, K. Zhang. Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater., 33, 2213431(2023).

    [4] Y.-Y. Wang, W.-J. Sun, D.-X. Yan, K. Dai, Z.-M. Li. Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon, 176, 118(2021).

    [5] Y. Wang, Z.-W. Fan, H. Zhang, J. Guo, D.-X. Yan, S. Wang, K. Dai, Z.-M. Li. 3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance. Mater. Des., 197, 109222(2021).

    [6] C. Li, H. Zhang, Y. Song, L. Cai, J. Wu, J. Wu, S. Wang, C. Xiong. Robust superhydrophobic and porous melamine-formaldehyde based composites for high-performance electromagnetic interference shielding. Colloids Surf. A, 624, 126742(2021).

    [7] W.-C. Yu, T. Wang, G.-Q. Zhang, Z.-G. Wang, H.-M. Yin, D.-X. Yan, J.-Z. Xu, Z.-M. Li. Largely enhanced mechanical property of segregated carbon nanotube/poly (vinylidene fluoride) composites with high electromagnetic interference shielding performance. Compos. Sci. Technol., 167, 260(2018).

    [8] J. Ju, T. Kuang, X. Ke, M. Zeng, Z. Chen, S. Zhang, X. Peng. Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Compos. Sci. Technol., 193, 108116(2020).

    [9] H.-Y. Zhang, J.-Y. Li, Y. Pan, Y.-F. Liu, N. Mahmood, X. Jian. Flexible carbon fiber-based composites for electromagnetic interference shielding. Rare Met., 41, 1(2022).

    [10] T. Sun, Z. Liu, S. Li, H. Liu, F. Chen, K. Wang, Y. Zhao. Effective improvement on microwave absorbing performance of epoxy resin-based composites with 3D MXene foam prepared by one-step impregnation method. Compos. A, 150, 106594(2021).

    [11] K. Zubair, A. Ashraf, H. Gulzar, M. F. Shakir, Y. Nawab, Z. Rehan, I. A. Rashid. Study of mechanical, electrical and EMI shielding properties of polymer-based nanocomposites incorporating polyaniline coated graphene nanoparticles. Nano Express, 2, 010038(2021).

    [12] W. Cai, W. Ma, W. Chen, P. Liu, Y. Liu, Z. Liu, W. He, J. Li. Microwave-assisted reduction and sintering to construct hybrid networks of reduced graphene oxide and MXene for electromagnetic interference shielding. Compos. A, 157, 106928(2022).

    [13] H. K. Choudhary, R. Kumar, S. P. Pawar, B. Sahoo. Role of graphitization-controlled conductivity in enhancing absorption dominated EMI shielding behavior of pyrolysis-derived Fe3C@ C-PVDF nanocomposites. Mater. Chem. Phys., 263, 124429(2021).

    [14] J. Kruželák, A. Kvasničáková, K. Hložeková, I. Hudec. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv., 3, 123(2021).

    [15] H. K. Choudhary, R. Kumar, S. P. Pawar, U. Sundararaj, B. Sahoo. Superiority of graphite coated metallic-nanoparticles over graphite coated insulating-nanoparticles for enhancing EMI shielding. New J. Chem., 45, 4592(2021).

    [16] K. Sushmita, P. Formanek, B. Krause, P. Pötschke, S. Bose. Distribution of carbon nanotubes in polycarbonate-based blends for electromagnetic interference shielding. ACS Appl. Nano Mater., 5, 662(2022).

    [17] K. S. Kumar, R. Rengaraj, G. Venkatakrishnan, A. Chandramohan. Polymeric materials for electromagnetic shielding-A review. Mater. Today Proc., 47, 4925(2021).

    [18] Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang, W. Zhang, C. Luo. Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. B, 169, 221(2019).

    [19] Y. Chen, J. Li, T. Li, L. Zhang, F. Meng. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon, 180, 163(2021).

    [20] P. Song, C. Liang, L. Wang, H. Qiu, H. Gu, J. Kong, J. Gu. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol., 181, 107698(2019).

    [21] F. Sharif, M. Arjmand, A. A. Moud, U. Sundararaj, E. P. Roberts. Segregated hybrid poly (methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 9, 14171(2017).

    [22] K. Zhang, G.-H. Li, L.-M. Feng, N. Wang, J. Guo, K. Sun, K.-X. Yu, J.-B. Zeng, T. Li, Z. Guo. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly (L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J. Mater. Chem. C, 5, 9359(2017).

    [23] Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J.-K. Kim. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 9, 9059(2017).

    [24] C. Liang, H. Qiu, Y. Han, H. Gu, P. Song, L. Wang, J. Kong, D. Cao, J. Gu. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. Mater. Chem. C, 7, 2725(2019).

    [25] H. Liu, Y. Xu, J.-P. Cao, D. Han, Q. Yang, R. Li, F. Zhao. Skin structured silver/three-dimensional graphene/polydimethylsiloxane composites with exceptional electromagnetic interference shielding effectiveness. Compos. A, 148, 106476(2021).

    [26] S.-H. Lee, D. Kang, I.-K. Oh. Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon, 111, 248(2017).

    [27] J. Li, X. Zhao, W. Wu, X. Ji, Y. Lu, L. Zhang. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem. Eng. J, 415, 129054(2021).

    [28] J. Chen, X. Liang, W. Liu, W. Gu, B. Zhang, G. Ji. Mesoporous carbon hollow spheres as a light weight microwave absorbing material showing modulating dielectric loss. Dalton Trans., 48, 10145(2019).

    [29] X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale, 9, 7408(2017).

    [30] Y. Yang, M. C. Gupta, K. L. Dudley, R. W. Lawrence. Novel carbon nanotube − polystyrene foam composites for electromagnetic interference shielding. Nano Lett., 5, 2131(2005).

    [31] J. Chen, X. Liao, S. Li, W. Wang, F. Guo, G. Li. A promising strategy for efficient electromagnetic interference shielding by designing a porous double-percolated structure in MWCNT/polymer-based composites. Compos. A, 138, 106059(2020).

    [32] J.-M. Thomassin, C. Pagnoulle, L. Bednarz, I. Huynen, R. Jerome, C. Detrembleur. Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J. Mater. Chem., 18, 792(2008).

    [33] X.-Y. Wang, S.-Y. Liao, H.-P. Huang, Y.-G. Hu, P.-L. Zhu, R. Sun, Y.-J. Wan. graphene oxide/carbon tube composite films with tunable porous structures for electromagnetic interference shielding. ACS Appl. Nano Mater., 5, 13509(2022).

    [34] J. Tang, N. Liang, L. Wang, J. Li, G. Tian, D. Zhang, S. Feng, H. Yue. Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption. Carbon, 152, 575(2019).

    [35] F. Banhart, J. Kotakoski, A. V. Krasheninnikov. Structural defects in graphene. ACS Nano, 5, 26(2011).

    [36] B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu, J. Ma, Y. Zhang, D. Li, G. Xu. Dielectric polarization in electromagnetic wave absorption: Review and perspective. J. Alloys Compd., 728, 1065(2017).

    [37] Y. Qing, Y. Li, F. Luo. Electromagnetic interference shielding properties of nitrogen-doped graphene/epoxy composites. J. Mater. Sci.: Mater. Electron., 32, 25649(2021).

    [38] L. Quan, F. Qin, D. Estevez, H. Wang, H. Peng. Magnetic graphene for microwave absorbing application: towards the lightest graphene-based absorber. Carbon, 125, 630(2017).

    [39] Q. Li, X. Tian, W. Yang, L. Hou, Y. Li, B. Jiang, X. Wang, Y. Li. Fabrication of porous graphene-like carbon nanosheets with rich doped-nitrogen for high-performance electromagnetic microwave absorption. Appl. Surf. Sci., 530, 147298(2020).

    [40] L. Quan, F. Qin, Y. Li, D. Estevez, G. Fu, H. Wang, H. Peng. Magnetic graphene enabled tunable microwave absorber via thermal control. Nanotechnology, 29, 245706(2018).

    [41] J. Tuček, P. Błoński, Z. Sofer, P. Šimek, M. Petr, M. Pumera, M. Otyepka, R. Zbořil. Sulfur doping induces strong ferromagnetic ordering in graphene: Effect of concentration and substitution mechanism. Adv. Mater., 28, 5045(2016).

    [42] J. Feng, F. Pu, Z. Li, X. Li, X. Hu, J. Bai. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon, 104, 214(2016).

    [43] Z. Li, X. Li, Y. Zong, G. Tan, Y. Sun, Y. Lan, M. He, Z. Ren, X. Zheng. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon, 115, 493(2017).

    [44] R. Sánchez-Salas, E. Muñoz-Sandoval, M. Endo, A. Morelos-Gómez, F. López-Urías. Nitrogen and sulfur incorporation into graphene oxide by mechanical process. Adv. Eng. Mater., 23, 2001444(2021).

    [45] P. Sun, H. Liu, M. Feng, L. Guo, Z. Zhai, Y. Fang, X. Zhang, V. K. Sharma. Nitrogen-sulfur co-doped industrial graphene as an efficient peroxymonosulfate activator: Singlet oxygen-dominated catalytic degradation of organic contaminants. Appl. Catal., B, 251, 335(2019).

    [46] V. Thirumal, T. Sreekanth, K. Yoo, J. Kim. Biomass-derived hard carbon and nitrogen-sulfur co-doped graphene for high-performance symmetric sodium ion capacitor devices. Energies, 16, 802(2023).

    [47] M. F. Gasim, A. Veksha, G. Lisak, S.-C. Low, T. S. Hamidon, M. H. Hussin, W.-D. Oh. Importance of carbon structure for nitrogen and sulfur co-doping to promote superior ciprofloxacin removal via peroxymonosulfate activation. J. Colloid Interface Sci., 634, 586(2023).

    [49] J. Zhao, Y. Liu, X. Quan, S. Chen, H. Zhao, H. Yu. Nitrogen and sulfur co-doped graphene/carbon nanotube as metal-free electrocatalyst for oxygen evolution reaction: the enhanced performance by sulfur doping. Electrochim. Acta, 204, 169(2016).

    [50] S. N. Alam, N. Sharma, L. Kumar. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene, 6, 1(2017).

    [51] N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W.-W. Liu, C. H. Voon. Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng., 184, 469(2017).

    [52] B.-X. Zhang, H. Gao, X.-L. Li. Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots. New J. Chem., 38, 4615(2014).

    [53] Z. S. Schroer, Y. Wu, Y. Xing, X. Wu, X. Liu, X. Wang, O. G. Pino, C. Zhou, C. Combs, Q. Pu. Nitrogen–sulfur-doped graphene quantum dots with metal ion-resistance for bioimaging. ACS Appl. Nano Mater., 2, 6858(2019).

    [54] D. Wu, T. Wang, L. Wang, D. Jia. Hydrothermal synthesis of nitrogen, sulfur co-doped graphene and its high performance in supercapacitor and oxygen reduction reaction. Microporous Mesoporous Mater., 290, 109556(2019).

    [55] T. Wang, L. Wang, D. Wu, W. Xia, H. Zhao, D. Jia. Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents. J. Mater. Chem. A, 2, 8352(2014).

    [56] K. Kakaei, G. Ghadimi. A green method for Nitrogen-doped graphene and its application for oxygen reduction reaction in alkaline media. Mater. Technol., 36, 46(2021).

    [57] G. Sun, H. Xie, J. Ran, L. Ma, X. Shen, J. Hu, H. Tong. Rational design of uniformly embedded metal oxide nanoparticles into nitrogen-doped carbon aerogel for high-performance asymmetric supercapacitors with a high operating voltage window. J. Mater. Chem. A, 4, 16576(2016).

    [58] J. Guo, S. Zhang, M. Zheng, J. Tang, L. Liu, J. Chen, X. Wang. Graphitic-N-rich N-doped graphene as a high performance catalyst for oxygen reduction reaction in alkaline solution. Int. J. Hydrogen Energy, 45, 32402(2020).

    [59] W. J. Wolfgong, A. S. H. Makhlouf, M. Aliofkhazraei. Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries, 279-307(2016).

    [60] Y. Xu, A. Uddin, D. Estevez, Y. Luo, H. Peng, F. Qin. Lightweight microwire/graphene/silicone rubber composites for efficient electromagnetic interference shielding and low microwave reflectivity. Compos. Sci. Technol., 189, 108022(2020).

    [61] T. Lu, H. Gu, Y. Hu, T. Zhao, P. Zhu, R. Sun, C.-P. Wong. Three dimensional copper foam-filled elastic conductive composites with simultaneously enhanced mechanical, electrical, thermal and electromagnetic interference (emi) shielding properties. 69th Electronic Components and Technology Conf., 1916-1920(2019).

    [62] T. H. Elagib, N. A. Kabbashi, E. A. Hassan, M. Alam, M. A. F. Al-Khatib. The role of high-performance microwave absorbing materials in electromagnetic interference shielding: A review of the advanced internal design of polymer-based nano-composites. Ann. Faculty Eng. Hunedoara-Int. J. Eng., 19(2022).

    [63] Y. Yu, Z. Chao, Q. Gong, C. Li, H. Fu, F. Lei, D. Hu, L. Zheng. Tailoring hierarchical carbon nanotube cellular structure for electromagnetic interference shielding in extreme conditions. Mater. Des., 206, 109783(2021).

    [64] A. Ashery, A. Gaballah, E. M. Ahmed. Tuned high dielectric constant, low dielectric loss tangent with positive and negative values for PPy/MWCNTs/TiO2/Al2O3/n-Si. J. Exp. Nanosci., 16, 309(2021).

    [65] R. Shu, Y. Wu, W. Li, J. Zhang, Y. Liu, J. Shi, M. Zheng. Fabrication of ferroferric oxide–carbon/reduced graphene oxide nanocomposites derived from Fe-based metal–organic frameworks for microwave absorption. Compos. Sci. Technol., 196, 108240(2020).

    [66] R. Shu, G. Zhang, C. Zhang, Y. Wu, J. Zhang. Nitrogen-doping-regulated electromagnetic wave absorption properties of ultralight three-dimensional porous reduced graphene oxide aerogels. Adv. Electron. Mater., 7, 2001001(2021).

    [67] Y. Wu, R. Shu, X. Shan, J. Zhang, J. Shi, Y. Liu, M. Zheng. Facile design of cubic-like cerium oxide nanoparticles decorated reduced graphene oxide with enhanced microwave absorption properties. J. Alloys Compd., 817, 152766(2020).

    [68] X. Zhang, J. Zhu, N. Haldolaarachchige, J. Ryu, D. P. Young, S. Wei, Z. Guo. Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer, 53, 2109(2012).

    [69] H. Gu, J. Guo, S. Wei, Z. Guo. Polyaniline nanocomposites with negative permittivity. J. Appl. Polym. Sci., 130, 2238(2013).

    [70] P. Kum-onsa, N. Phromviyo, P. Thongbai. Na1/3Ca1/3Bi1/3Cu3Ti4O12–Ni@ NiO/poly (vinylidene fluoride): Three–phase polymer composites with high dielectric permittivity and low loss tangent. Results Phys., 18, 103312(2020).

    Tools

    Get Citation

    Copy Citation Text

    Tienah H. H. Elagib, Nassereldeen A. Kabbashi, Md Zahangir Alam, Elwathig A. M. Hassan, Mohamed E. S. Mirghani, Nour Hamid Abdurahman. Dual nitrogen-sulfur-doping induce microwave absorption and EMI shielding in nanocomposites based on graphene[J]. Journal of Advanced Dielectrics, 2024, 14(5): 2350029

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 15, 2023

    Accepted: Nov. 29, 2023

    Published Online: Jan. 2, 2025

    The Author Email: Elagib Tienah H. H. (tienahhussain25024@gmail.com)

    DOI:10.1142/S2010135X23500297

    Topics