Journal of Inorganic Materials, Volume. 34, Issue 1, 1(2019)
ReX2 (X=S, Se): A New Opportunity for Development of Two-dimensional Anisotropic Materials
[1] W CHEN, C GONG, Y ZHANG et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci, 4, 1700231(2017).
[2] R FEI, H TIAN, J TICE et al. Low-symmetry two-dimensional materials for electronic and photonic applications. Nano Today, 11, 763-777(2016).
[3] X LIU, R RYDER C, A WELLS S et al. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods, 1, 1700143(2017).
[4] C JIA Y, H WANG, N XIA F et al. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5, 4458(2014).
[5] H LO S, Y ZHANG, D ZHAO L et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 508, 373-377(2014).
[6] C LIU S, W YANG, Y YANG et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region.. Am. Chem. Soc., 140, 4150-4156(2018).
[7] L CHEN, W DAI Y, J XU et al. A two-dimensional semiconductor transistor with boosted gate control and sensing ability. Sci.Adv.(2017).
[8] H KANG D, S OH, J SHIM et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun., 7, 13413(2016).
[9] L HUANG, Y PENG, X WANG et al. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p-n heterojunctions. Nano Res., 9, 507-516(2016).
[10] A DATHBUN, S KIM, Y KIM et al. Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett., 17, 2999-3005(2017).
[11] B MOHAMMED O, P MOVVA H C, N PRASAD et al. ReS2-based interlayer tunnel field effect transistor. J. Appl. Phys, 122, 245701(2017).
[12] M CORBETT C, C MCCLELLAN, A RAI et al. Field effect transistors with current saturation and voltage gain in ultrathin ReS2. ACS Nano, 9, 363-370(2015).
[13] J CHO A, H KIM, D NAMGUNG S et al. Electric and photovoltaic characteristics of a multi-layer ReS2/ReSe2 heterostructure. APL Materials, 5, 076101(2017).
[14] Y JIN, X YUAN, E ZHANG et al. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater., 25, 4076-4082(2015).
[15] Z LI, P WANG, E ZHANG et al. Tunable ambipolar polarization- sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano, 10, 8067-8077(2016).
[16] K QIN J, D REN D, Z SHAO W et al. Photoresponse enhancement in monolayer ReS2 phototransistor decorated with CdSe-CdS-ZnS quantum dots. ACS Appl. Mater. Inter., 9, 39456-39463(2017).
[17] Y LI, S TONGAY, S YANG et al. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale, 6, 7226-7231(2014).
[18] Y CUI, X LIU, F LU. Nonlinearsaturable and polarization- induced absorption of rhenium disulfide. Sci. Rep., 7, 40080(2017).
[19] G MENDES R, S TAN, Q ZHANG et al. Extremely weak Van Der Waals coupling in vertical ReS2 nanowalls for high-current- density lithium-ion batteries. Adv. Mater., 28, 2616-2623(2016).
[20] Y CHEN, F QI, B ZHENG et al. Hierarchical architecture of ReS2/rGO composites with enhanced electrochemical properties for lithium-ion batteries. Appl. Surf. Sci., 413, 123-128(2017).
[21] Y CHEN, J HE, F QI et al. Few-layered ReS2 nanosheets grown on carbon nanotubes: a highly efficient anode for high-performance lithium-ion batteries. Chem. Eng. J., 315, 10-17(2017).
[22] Y CHEN, F QI, B ZHENG et al. 3D chrysanthemum-like ReS2 microspheres composed of curly few-layered nanosheets with enhanced electrochemical properties for lithium-ion batteries.. Mater. Sci., 52, 3622-3629(2017).
[23] N ESCALONA. LLAMBIAS F J G, VRINAT M, et al. Highly active ReS2/gamma-Al2O3 catalysts: effect of calcination and activation over thiophene hydrodesulfurization. Catal. Commun., 8, 285-288(2007).
[24] A ALIAGA J, N PAWELEC B, N ZEPEDA T et al. Microspherical ReS2 as a high-performance hydrodesulfurization catalyst. Catal. Lett., 147, 1243-1251(2017).
[25] N ESCALONA, R GARCIA, C SEPULVEDA et al. Hydrodeoxygenation and hydrodesulfurization co-processing over ReS2 supported catalysts. Catal. Today, 195, 101-105(2012).
[26] J ANTONIO ALIAGA, J FRANCISCO ARAYA, T ZEPEDA et al. 7(12): 7120377-1-11. Catalysts(2017).
[27] F QI, X WANG, B ZHENG et al. Self-assembled chrysanthemum- like microspheres constructed by few-layer ReSe2 nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta, 224, 593-599(2017).
[28] C HO T, M MCCONNACHIE J, Q SHEN et al. Kinetic characterization of unsupported ReS2 as hydroprocessing catalyst.. Catal., 276, 114-122(2010).
[29] J GAO, L LI, J TAN et al. Vertically oriented arrays of ReS2 nanosheets for electrochemical energy storage and electrocatalysis. Nano Lett., 16, 3780-3787(2016).
[30] , K DAVEY, M RAHMAN. Advent of 2D rhenium disulfide (ReS2): fundamentals to applications. Adv. Funct. Mater., 27, 1606129(2017).
[31] S BHATTI A, L GAN, M HAFEEZ et al. Rhenium dichalcogenides (ReX2, X = S or Se): an emerging class of TMDs family. Mater. Chem. Front., 1, 1917-1932(2017).
[32] F JELLINEK, C WILDERVANCK J. The dichalcogenides of technetium and rhenium. Journal of the Less Common Metals, 24, 73-81(1971).
[33] , Y CAI, G YU Z. Robust direct bandgap characteristics of one- and two-dimensional ReS2. Sci. Rep., 5, 13783(2015).
[34] Y GONG, K KEYSHAR, G YE et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater., 27, 4640-4648(2015).
[35] Y FENG, Y WANG, W ZHOU et al. Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys. Rev. B, 92, 054110(2015).
[36] T HUANG, C KAO Y, Y LIN D et al. Anomalous structural phase transition properties in ReSe2 and Au-doped ReSe2. J. Chem. Phys., 137, 024509(2012).
[37] H HO C, S HUANG Y, K TIONG K. The electrical transport properties of ReS2 and ReSe2 layered crystals. Solid State. Commun., 111, 635-640(1999).
[38] K KALANTAR-ZADEH, A KIS, H WANG Q et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699-712(2012).
[39] W KIM S, H LEE Y, H YANG et al. Structural and quantum- state phase transitions in Van Der Waals layered materials. Nat. Phys., 13, 931-937(2017).
[40] M CHHOWALLA, G EDA, S SHIN H et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5, 263-275(2013).
[41] L JIANG, H LI, Z YIN et al. Single-layer MoS2 phototransistors. ACS Nano, 6, 74-80(2012).
[42] W FAN, J KANG, S TONGAY et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett., 14, 3185-3190(2014).
[43] A SPLENDIANI, L SUN, Y ZHANG et al. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 1271-1275(2010).
[44] G GALLI, T LI. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C, 111, 16192-16196(2007).
[45] P BOTTGER, R SCHMIDT, P TONNDORF et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express, 21, 4908-4916(2013).
[46] S DALE, L HART, S HOYE et al. Rhenium dichalcogenides: layered semiconductors with two vertical orientations. Nano Lett., 16, 1381-1386(2016).
[47] S DALE, S HART L, L WEBB J et al. Electronic bandstructure and Van Der Waals coupling of ReSe2 revealed by high-resolution angle-resolved photoemission spectroscopy. Sci. Rep, 7, 5145(2017).
[48] S HART L, L WEBB J, D WOLVERSON et al. Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. B, 96, 115205(2017).
[49] S CRAMPIN, S KAZEMI A, D WOLVERSON et al. Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano, 8, 11154-11164(2014).
[50] C KO, H SAHIN, S TONGAY et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling, 5, 3252(2014).
[51] Y FU, E LIU, Y WANG et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun., 6, 6991(2015).
[52] G EDA, D VOIRY, H YAMAGUCHI et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett., 11, 5111-5116(2011).
[53] J HONE, C LEE, F MAK K et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).
[54] L CHU, Z GHORANNEVIS, W ZHAO et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano, 7, 791-797(2013).
[55] L ELIAS A, R GUTIERREZ H, N PEREA-LOPEZ et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett., 13, 3447-3454(2013).
[56] J WU, H ZHAO, H ZHONG et al. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res., 8, 3651-3661(2015).
[57] C ATACA, S TONGAY, J ZHOU et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett., 12, 5576-5580(2012).
[58] S BERCIAUD, G FROEHLICHER, E LORCHAT. Splitting of interlayer shear modes and photon energy dependent anisotropic raman response in N-layer ReSe2 and ReS2. ACS Nano, 10, 2752-2760(2016).
[59] X KONG, W WANG, Q ZHANG et al. Edge-to-edge oriented self-assembly of ReS2 nanoflakes.. Am. Chem. Soc., 138, 11101-11104(2016).
[60] W WANG, J ZHANG, Q ZHANG et al. Thermally induced bending of ReS2 nanowalls. Adv. Mater., 30, 1704585(2018).
[61] B JARIWALA, A JINDAL, D VOIRY et al. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater., 28, 3352-3359(2016).
[62] D HU, L XING, G XU et al. Two-dimensional semiconductors grown by chemical vapor transport. Angew Chem. Int. Ed., 56, 3611-3615(2017).
[63] J KANG, K SANGWAN V, D WOOD J et al. Layer-by-layer sorting of rhenium disulfide via high-density isopycnic density gradient ultracentrifugation. Nano Lett., 16, 7216-7223(2016).
[64] A JAWAID, D NEPAL, K PARK et al. Mechanism for liquid phase exfoliation of MoS2. Chem. Mater., 28, 337-348(2015).
[65] S DONG, H ZHANG, J ZHENG et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun., 5, 2995(2014).
[66] , N COLEMAN J, M LOTYA. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331, 568-571(2011).
[67] M CHHOWALLA, G KANATZIDIS M, V NICOLOSI et al. Liquid exfoliation of layered materials. Science, 340, 1226419-1226419(2013).
[68] C HUO, X SONG, Z YAN et al. 2D materials via liquid exfoliation: a review on fabrication and applications. Sci. Bull., 60, 1994-2008(2015).
[69] X MA, J SUN, X ZHAO et al. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano, 10, 2159-2166(2016).
[70] T FUJITA, Y ITO, Y TAN et al. Chemically exfoliated ReS2 nanosheets. Nanoscale, 6, 12458-12462(2014).
[71] X DENG H, Z WANG, K XU et al. Sulfur vacancy activated field effect transistors based on ReS2 nanosheets. Nanoscale, 7, 15757-15762(2015).
[72] Y CHOI, B KANG, Y KIM et al. Direct synthesis of large-area continuous ReS2 films on a flexible glass at low temperature. 2D Materials, 4, 025057(2017).
[73] K QIN J, Z SHAO W, Y XU C et al. Chemical vapor deposition growth of degenerate p-type Mo-doped ReS2 films and their homojunction. ACS Appl. Mater. Inter., 9, 15583-15591(2017).
[74] L GAN, M HAFEEZ, H LI et al. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv. Funct. Mater., 26, 4551-4560(2016).
[75] B CHEN, A SUSLU, K WU et al. Controlling structural anisotropy of anisotropic 2D layers in pseudo-1D/2D material heterojunctions. Adv. Mater., 29, 1701201(2017).
[76] F CUI, Q FENG, J HONG et al. Synthesis of large-size 1T ' ReS2xSe2(1-x) alloy monolayer with tunable bandgap and carrier type. Adv. Mater., 29, 1705015(2017).
[77] F CUI, X LI, C WANG et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater., 28, 5019-5024(2016).
[78] L GAN, M HAFEEZ, H LI et al. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater., 28, 8296-8301(2016).
[79] N AL-DULAIMI, J LEWIS D, A LEWIS E et al. Sequential bottom-up and top-down processing for the synthesis of transition metal dichalcogenide nanosheets: the case of rhenium disulfide (ReS2). Chem. Commun., 52, 7878-7881(2016).
[80] A THERESE H, A YELLA, N ZINK et al. Large scale MOCVD synthesis of hollow ReS2 nanoparticles with nested fullerene-like structure. Chem. Mater., 20, 3587-3593(2008).
[81] S KIM, S YOON, K YU H et al. Growth of two-dimensional rhenium disulfide (ReS2) nanosheets with a few layers at low temperature. Crystengcomm, 19, 5341-5345(2017).
[82] A CHATURVEDI, P HU, A SLABON et al. Rapid synthesis of transition metal dichalcogenide few-layer thin crystals by the microwave-induced-plasma assisted method. J. Cryst. Growth, 450, 140-147(2016).
[83] N AL-DULAIMI, J LEWIS D, L ZHONG X et al. Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors. J. Mater. Chem. C, 4, 2312-2318(2016).
[84] N AL-DULAIMI, A LEWIS E, N SAVJANI et al. The influence of precursor on rhenium incorporation into Re-doped MoS2 (Mo1-xRexS2) thin films by aerosol-assisted chemical vapour deposition (AACVD). J. Mater. Chem. C, 5, 9044-9052(2017).
[85] H CHOUDHURY T, H SIMCHI, N WALTER T et al. Sulfidation of 2D transition metals (Mo, W, Re, Nb, Ta): thermodynamics, processing, and characterization. J. Mater. Sci., 52, 10127-10139(2017).
[86] J BOROWIEC, P GILLIN W, C WILLIS M A et al. Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation. J. Phys: Condens. Matter(2018).
[87] Z CHEN Y, Y HU S, K TIONG K et al. Growth and characterization of molybdenum-doped rhenium diselenide. Mater. Chem. Phys., 104, 105-108(2007).
[88] Y CHEN, F QI, B ZHENG et al. Facile growth of large-area and high-quality few-layer ReS2 by physical vapour deposition. Mater. Lett., 184, 324-327(2016).
[89] F CUI, Q FENG, X LI et al. Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res., 10, 2732-2742(2017).
[90] F CUI, Q FENG, X LI et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale, 8, 18956-18962(2016).
[91] B JIANG, Z XU, T ZHANG et al. Twinned growth behaviour of two-dimensional materials. Nat. Commun., 7, 13911(2016).
[92] P CHEN, Y LU, J WANG et al. The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition. Physica E, 89, 115-118(2017).
[93] Y LI, K QIN J, Z SHAO W et al. Van der Waals epitaxy of large-area continuous ReS2 films on mica substrate. RSC Adv., 7, 24188-24194(2017).
[94] X HE, P HU, F LIU et al. Chemical vapor deposition of high-quality and atomically layered ReS2. Small, 11, 5423-5429(2015).
[95] S TONGAY, S YANG, Q YUE et al. High-performance few-layer Mo-doped ReSe2 nanosheet photodetectors. Sci. Rep., 4, 5442(2014).
[96] B CHEN, K WU, S YANG et al. Domain architectures and grain boundaries in chemical vapor deposited highly anisotropic ReS2 monolayer films. Nano Lett., 16, 5888-5894(2016).
[97] Y CHEN, L GAN, H LI et al. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: a typical study on WS2. Adv. Mater., 29, 160550(2017).
[98] L GAN, C YAN, X ZHOU et al. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater., 27, 1702918(2017).
[99] P HUANG, B JIN, Q ZHANG et al. Self-limited epitaxial growth of ultrathin non-layered CdS flakes for high-performance photodetectors. Adv. Funct. Mater., 28, 1800181(2018).
[100] M JU, X LIANG, J LIU et al. Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals. Chem. Mater., 29, 6095-6103(2017).
[101] Y XIAO, Q ZHANG, T ZHANG et al. Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides. Chem. Mater., 29, 4641-4644(2017).
[102] L GAN, W HUANG, H YANG et al. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition, 27, 1702448(2017).
[103] Y GONG, Z LIN, G YE et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano, 9, 11658-11666(2015).
[104] L GAN, D WANG, S ZHOU et al. Space-confined vapor deposition synthesis of two dimensional materials. Nano Res, 12274(2017).
[105] W LEE, J PARK, G SONG J et al. Layer-controlled, wafer scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano, 7, 11333-11340(2013).
[106] , Y JANG, S YEO. Wafer-scale, conformal and direct growth of MoS2 thin films by atomic layer deposition. Appl. Surf. Sci., 365, 160-165(2016).
[107] I CONCINA, N MEMARIAN, M ROZATI S et al. Deposition of nanostructured CdS thin films by thermal evaporation method: effect of substrate temperature. Mater, 10, 773(2017).
[108] D GIBSON, T HOWIND, M MAZUR et al. Modification of various properties of HfO2 thin films obtained by changing magnetron sputtering conditions. Surf. Coat. Technol., 320, 426-431(2017).
[109] W WAN, L ZHAN, Z ZHU et al. MoS2 materials synthesized on SiO2/Si substrates via MBE. J. Phys.: Conf. Ser., 864, 012037(2017).
[110] J HAMALAINEN, M MATTINEN, K MIZOHATA et al. Atomic layer deposition of rhenium disulfide. Adv. Mater, 30, 1703622(2018).
[111] D BISWAS, M GANOSE A, R YANO et al. Narrow-band anisotropic electronic structure of ReS2. Phys. Rev. B, 96, 085205(2017).
[112] X HE, F LIU, S ZHENG et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater., 26, 1169-1177(2016).
[113] C HUANG C, C KAO C, Y LIN D et al. A comprehensive study on the optical properties of thin gold-doped rhenium disulphide layered single crystals. Jpn. J. Appl. Phys.,
[114] H HO C, H HSIEH M, C WU C et al. Dichroic optical and electrical properties of rhenium dichalcogenides layer compounds.. Alloys Compd., 442, 245-248(2007).
[115] Z BELLUS M, Q CUI, J HE et al. Transient absorption measurements on anisotropic monolayer ReS2. Small, 11, 5565-5571(2015).
[116] , B ASLAN O, A CHENET D. Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photonics, 3, 96-101(2016).
[117] , Y LIN D, Y ZHENG J. Piezoreflectance study of band-edge excitons of ReS2:Au. Jpn. J. Appl. Phys., 48, 052302(2009).
[118] J GUO, Y SHAN, S WU et al. Phase-engineering-induced generation and control of highly anisotropic and robust excitons in few-layer ReS2.. Phys. Chem. Lett., 8, 2719-2724(2017).
[119] H HO C, W LEE H, C WU C. Polarization sensitive behaviour of the band-edge transitions in ReS2 and ReSe2 layered semiconductors. J. Phys.: Condens. Matter, 16, 5937-5944(2004).
[120] A ARORA, M DRUEPPEL, J NOKY et al. Highly anisotropic in-plane excitons in atomically thin and bulklike 1T’-ReSe2. Nano Lett., 17, 3202-3207(2017).
[121] D LEE, S SIM, V TRIFONOV A et al. Ultrafast quantum beats of anisotropic excitons in atomically thin ReS2. Nat. Commun., 9, 351(2018).
[122] D LEE, M NOH, S SIM et al. Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2. Nat. Commun., 7, 13569(2016).
[123] P AVOURIS, A CHAVES, T LOW et al. Anisotropic exciton Stark shift in black phosphorus(2015).
[124] S HUANG, R SAITO, Y TATSUMI et al. 28(35): 353002-1-37(2016).
[125] N MAO, N ZHANG, S ZHANG et al. Anomalous polarized raman scattering and large circular intensity differential in layered triclinic ReS2. ACS Nano, 11, 10366-10372(2017).
[126] J JUDEK, A LAPINSKA, A TAUBE et al. 107(1): 013105- 1-5(2015).
[127] P MIAO, K QIN J, Y SHEN et al. 1704079-1-8(2018).
[128] A MCCREARY, R SIMPSON J, Y WANG et al. Intricate resonant Raman response in anisotropic ReS2. Nano Lett., 17, 5897-5907(2017).
[129] A MCCREARY, R PRADHAN N, D RHODES et al. Metal to insulator quantum-phase transition in few-layered ReS2. Nano Lett., 15, 8377-8384(2015).
[130] B ASLAN O, A CHENET D, Y HUANG P et al. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett., 15, 5667-5672(2015).
[131] R HE, A YAN J, Z YIN et al. Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy. Nano Lett., 16, 1404-1409(2016).
[132] N MAO, J WU, L XIE et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. Int. Ed., 127, 2396-2399(2015).
[133] W SHEN, J TAO, S WU et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano, 9, 11362-11370(2015).
[134] , H WANG, F XIA. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun, 5, 4458(2014).
[135] X HU Z, X KONG, J QIAO et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun., 5, 4475(2014).
[136] P GONG, L LI, W WANG et al. Strong in-plane anisotropies of optical and electrical response in layered dimetal chalcogenide. ACS Nano, 11, 10264-10272(2017).
[137] P KOMSA H, C LIN Y, H YEH C et al. Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano, 9, 11249-11257(2015).
[138] H LI, L LI, L PI et al. Photodetectors based on two-dimensional semiconductors: progress, opportunity and challenge. Chin. Sci. Bull., 62, 3134-3153(2017).
[139] Z WEI, K YAN, T ZHANG et al. Near-infrared photoresponse of one-sided abrupt MAPbI3/TiO2 heterojunction through a tunneling process. Adv. Funct. Mater., 26, 8545-8554(2016).
[140] C TANG, L TAO, L ZENG et al. High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci. Rep., 6(2016).
[141] Y CHAI, L LI, W WANG et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater, 27(2017).
[142] . Thermal conduction in single-layer black phosphorus: highly anisotropic?. Nanotechnology, 26, 055701(2015).
[143] Y DENG, Z LUO, J MAASSEN et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun., 6, 8572(2015).
[144] S LEE, J SUH, F YANG et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun., 6, 8573(2015).
[145] N CHEN Y, Z HAN, L MA J et al. Strong anisotropic thermal conductivity of monolayer WTe2. 2D Materials, 3(2016).
[146] G LIU, Y SUN H, J ZHOU et al. First-principles study of lattice thermal conductivity of Td-WTe2. New J. Phys, 18(2016).
[147] , J CARRETE, N MINGO. Low thermal conductivity and triaxial phononic anisotropy of SnSe. Appl. Phys. Lett., 105(2014).
[148] L LI Y, D REN D, X SHI et al. Investigation of the anisotropic thermoelectric properties of oriented polycrystalline SnSe. Energies, 8, 6275-6285(2015).
[149] Q GUO R, D KUANG Y, J WANG X et al. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys. Rev. B, 92(2015).
[150] C HE, Z MA, Z SUN B et al. Anisotropic thermoelectric properties of layered compounds in SnX2(X = S, Se): a promising thermoelectric material. Phys. Chem. Chem. Phys., 17, 29844-29853(2015).
[151] H JANG, R RYDER C, D WOOD J et al. 3D anisotropic thermal conductivity of exfoliated rhenium disulfide. Adv. Mater, 29(2017).
[152] K ESHUN, S YU, H ZHU et al. Strain-engineering the anisotropic electrical conductance in ReS2 monolayer. Appl. Phys. Lett., 108, 191901(2016).
[153] T LI, M MENG, G SHI C et al. Magnetism induced by cationic defect in monolayer ReSe2 controlled by strain engineering. Appl. Surf. Sci., 425, 696-701(2017).
[154] M MIN Y, M REN X, Q WANG A et al. Defect formation and electronic structure regulated by strain engineering in ReS2. Appl. Surf. Sci., 427, 942-948(2018).
[155] Y HE C, C WEI B, H ZHOU Z et al. Anisotropic Raman scattering and mobility in monolayer 1Td-ReS2 controlled by strain engineering. Appl. Surf. Sci., 404, 276-281(2017).
[156] , O ZHANG X. Strain-induced magnetism in ReS2 monolayer with defects. Chin. Phys. B, 25(2016).
[157] H GUO J, H LI T, H ZHOU Z et al. Raman scattering modification in monolayer ReS2 controlled by strain engineering. Chin. Phys. Lett, 33, 046201(2016).
[158] Y LI, L LI Y, C TANG. Strain engineering and photocatalytic application of single-layer ReS2. Int.. Hydrogen Energy, 42, 161-167(2017).
[159] T HUANG, C KAO Y, Y LIN D et al. Anomalous structural phase transition properties in ReSe2 and Au-doped ReSe2. J. Chem. Phys(2012).
[160] C JIN, J WANG, Y YAN et al. Associated lattice and electronic structural evolutions in compressed multilayer ReS2.. Phys. Chem. Lett., 8, 3648-3655(2017).
[161] J DU, D HOU, Y MA et al. High pressure X-ray diffraction study of ReS2. J. Phys. Chem. Solids, 71, 1571-1575(2010).
[162] A ELGHAZALI M, H MIRHOSSEINI, G NAUMOV P et al. Pressure-induced metallization in layered ReSe2. J. Phys. Condens Matter(2017).
[163] H SAHIN, C WANG, S YANG et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett., 15, 1660-1666(2015).
[164] C PU, D ZHOU, Y ZHOU et al. Pressure-induced metallization and superconducting phase in ReS2. npj. Quantum Mater., 2, 1-7(2017).
[165] C BACAKSIZ, T SENGER R, M YAGMURCUKARDES et al. Hydrogen-induced structural transition in single layer ReS2. 2D Materials, 4, 035013(2017).
[166] H JO S, H KANG D, Y PARK H et al. Broad detection range rhenium diselenide photodetector enhanced by (3-aminopropyl) triethoxysilane and triphenylphosphine treatment. Adv. Mater., 28, 6711-6718(2016).
[167] H ALI M, H KANG D, H PARK J. Rhenium diselenide (ReSe2) infrared photodetector enhanced by (3-aminopropyl) trimethoxysilane (APTMS) treatment. Org. Electron., 53, 14-19(2018).
[168] Q LI, X ZHANG. Electronic and magnetic properties of nonmetal atoms adsorbed ReS2 monolayers. J. Appl. Phys, 118, 064306(2015).
[169] M LUO, H SHEN Y, L YIN T. Structural, electronic, and magnetic properties of transition metal doped ReS2 monolayer. JETP Letters, 105, 255-259(2017).
[170] C LOH G, R PANDEY. Robust magnetic domains in fluorinated ReS2 monolayer. Phys. Chem. Chem. Phys., 17, 18843-18853(2015).
[171] , , O OBODO K. Influence of transition metal doping on the electronic and optical properties of ReS2 and ReSe2 monolayers. Phys. Chem. Chem. Phys., 19, 19050-19057(2017).
Get Citation
Copy Citation Text
Ren-Yan WANG, Lin GAN, Tian-You ZHAI, [in Chinese], [in Chinese], [in Chinese]. ReX2 (X=S, Se): A New Opportunity for Development of Two-dimensional Anisotropic Materials[J]. Journal of Inorganic Materials, 2019, 34(1): 1
Category: Research Articles
Received: Apr. 19, 2018
Accepted: --
Published Online: Feb. 4, 2021
The Author Email: