Journal of the Chinese Ceramic Society, Volume. 50, Issue 6, 1715(2022)
Additive Manufacturing of Optoelectronic Functional Thin Films and Devices
[1] [1] SASABE H, KIDO J, Development of high performance OLEDs for general lighting[J]. J Mater Chem C, 2013, 1(9): 1699-1707.
[2] [2] ZHAN Z, AN J, WEI Y, et al. Inkjet-printed optoelectronics[J]. Nanoscale, 2017, 9(3): 965-993.
[3] [3] PANG Y K, CAO Y T, CHU Y H, et al. Additive manufacturing of batteries[J]. Adv Funct Mater, 2019, 1(30): 1906244.
[4] [4] LIU J, YANG Z, YE B, et al. A review of stability-enhanced luminescent materials: fabrication and optoelectronic applications[J]. J Mater Chem C, 2019, 7(17): 4934-4955.
[5] [5] RIM Y S, BAE S H, CHEN H, et al. Recent progress in materials and devices toward printable and flexible sensors[J]. Adv Mater, 2016, 28(22): 4415-40.
[6] [6] QIAO Y, GUO H. Upconversion properties of Y2O3: Er films prepared by sol-gel method[J]. J Rare Earths, 2009, 27(3): 406-410.
[7] [7] KY?MEN T, HANAYA M, TAKASHIMA H. Electroluminescence near interfaces between (Ca, Sr)TiO3: Pr phosphor and SnO2: Sb transparent conductor thin films prepared by sol-gel and spin-coating methods[J]. J Lumin, 2014, 149: 133-137.
[8] [8] MIYATA T, NAKATANI T, MINAMI T. Manganese-activated gallium oxide electroluminescent phosphor thin films prepared using various deposition methods[J]. Thin Solid Films, 2000, 373(1): 145-149.
[9] [9] MINAMI T, KOBAYASHI Y, MIYATA T, et al. High-luminance thin-film electroluminescent devices using Y2O3: Mn phosphor[J]. Thin Solid Films, 2003, 443(1): 91-96.
[10] [10] NOMOTO J I, HIRANO T, MIYATA T, et al. Preparation of Al-doped ZnO transparent electrodes suitable for thin-film solar cell applications by various types of magnetron sputtering depositions[J]. Thin Solid Films, 2011, 520(5): 1400-1406.
[11] [11] MIYATA T, ISHINO J I, SAHARA K, et al. Color control of emissions from rare earth-co-doped La2O3: Bi phosphor thin films prepared by magnetron sputtering[J]. Thin Solid Films, 2011, 519(22): 8095-8099.
[12] [12] LEIJTENS T, EPERON G E, NOEL N K, et al. Stability of metal halide perovskite solar cells[J]. Adv Energy Mater, 2015, 5(20): 23.
[13] [13] GATHER M C, KOHNEN A, MEERHOLZ K. White organic light-emitting diodes[J]. Adv Mater, 2011, 23(2): 233-248.
[14] [14] KIM D, JUNG H J, PARK I J, et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites[J]. Science, 2020, 368(6487): 155.
[16] [16] WEIJER P, BOUTEN P C P, UNNIKRISHNAN S, et al. High-performance thin-film encapsulation for organic light-emitting diodes[J]. Org Electron, 2017, 44: 94-98.
[17] [17] DENG Y H, ZHENG X P, BAI Y, et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules[J]. Nat Energy, 2018, 3(7): 560-566.
[21] [21] SINGH M, HARING A P, TONG Y, et al. Additive manufacturing of mechanically isotropic thin films and membranes via microextrusion 3D printing of polymer solutions[J]. ACS Appl Mater Interfaces, 2019, 11(6): 6652-6661.
[22] [22] BRUBAKER C D, NEWCOME K N, JENNINGS G K, et al. 3D-printed alternating current electroluminescent devices[J]. J Mater Chem C, 2019, 7(19): 5573-5578.
[24] [24] YANG J, CHOI M K, KIM D H, et al. Designed assembly and integration of colloidal nanocrystals for device applications[J]. Adv Mater, 2016, 28(6): 1176-1207.
[25] [25] NI Z Y, BAO C X, LIU Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells[J]. Science, 2020, 367(6484): 1352-1358.
[26] [26] DOHERTY T A S, WINCHESTER A J, MACPHERSON S, et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites[J]. Nature, 2020, 580(7803): 360-366.
[27] [27] CAMPOSEO A, PERSANO L, FARSARI M, et al. Additive manufacturing: applications and directions in photonics and optoelectronics[J]. Adv Opt Mater, 2019, 7(1): 1800419.
[28] [28] MATHIES F, LIST-KRATOCHVIL E J W, UNGER E L. Advances in inkjet-printed metal halide perovskite photovoltaic and optoelectronic devices[J]. Energy Technol, 2019, 8(4): 1900991.
[29] [29] XU X F, SUN L Y, SHEN K, et al. Organic and hybrid organic-inorganic flexible optoelectronics: Recent advances and perspectives[J]. Synth Met, 2019, 256: 116137.
[30] [30] WU Y, ZHAO D J, ZHANG J D, et al. Microscale curling and alignment of Ti3C2Tx MXene by confining aerosol droplets for planar micro-supercapacitors[J]. ACS Omega, 2021, 6(48): 33067-33074.
[31] [31] GIACHINI P, GUPTA S S, WANG W, et al. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients[J]. Sci Adv, 2020, 6(8): 11.
[32] [32] ERVIN M H, LE L T, LEE W Y. Inkjet-printed flexible graphene-based supercapacitor[J]. Electrochim Acta, 2014, 147: 610-616.
[33] [33] ZHANG B, HE J K, LI X, et al. Micro/nanoscale electrohydrodynamic printing: from 2D to 3D[J]. Nanoscale, 2016, 8(34): 15376-15388.
[34] [34] DEINER L J, REITZ T L. Inkjet and aerosol jet printing of electrochemical devices for energy conversion and storage[J]. Adv Eng Mater, 2017, 19(7): 1600878.
[35] [35] SECOR E B. Principles of aerosol jet printing[J]. Flex Print Electron, 2018, 3(3): 035002.
[36] [36] CAO C Y, ANDREWS J B, FRANKLIN A D. Completely printed, flexible, stable, and hysteresis-free carbon nanotube thin-film transistors via aerosol jet printing[J]. Adv Electron Mater, 2017, 3(5): 1700057.
[37] [37] SINGH M, HAVERINEN H M, DHAGAT P, et al. Inkjet printing-process and its applications[J]. Adv Mater, 2010, 22(6): 673-685.
[38] [38] TEKIN E, SMITH P J, SCHUBERT U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles[J]. Soft Matter, 2008, 4(4): 703-713.
[39] [39] CHENG Z, XING R, HOU Z, et al. Patterning of light-emitting YVO4: Eu3+ thin films via inkjet printing[J]. J Phys Chem Lett, 2010, 114(21): 9883-9888.
[40] [40] XIONG X Y, WEI C T, XIE L M, et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface[J]. Org Electron, 2019, 73: 247-254.
[41] [41] KO S H, CHUNG J, HOTZ N, et al. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication[J]. J Micromech Microeng, 2010, 20(12): 125010.
[42] [42] GALLIKER P, SCHNEIDER J, EGHLIDI H, et al. Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets[J]. Nat Commun, 2012, 3: 9.
[43] [43] PARK J U, HARDY M, KANG S J, et al. High-resolution electrohydrodynamic jet printing[J]. Nat Mater, 2007, 6(10): 782-789.
[44] [44] AN B W, KIM K, LEE H, et al. High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks[J]. Adv Mater, 2015, 27(29): 4322-4328.
[45] [45] SCHNEIDER J, ROHNER P, THUREJA D, et al. Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes[J]. Adv Funct Mater, 2016, 26(6): 833-840.
[46] [46] AN H S, PARK Y G, KIM K, et al. High-resolution 3D printing of freeform, transparent displays in ambient air[J]. Adv Sci, 2019, 6(23): 1901603.
[47] [47] CHEN M J, LEE H, YANG J, et al. Parallel, multi-material electrohydrodynamic 3D nanoprinting[J]. Small, 2020, 16(13): 1906402.
[48] [48] GRATSON G M, XU M J, LEWIS J A. Microperiodic structures-direct writing of three-dimensional webs[J]. Nature, 2004, 428(6981): 386-386.
[49] [49] HU J, YU M F. Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds[J]. Science, 2010, 329(5989): 313-316.
[50] [50] KIM J T, PYO J, RHO J, et al. Three-dimensional writing of highly stretchable organic nanowires[J]. ACS Macro Lett, 2012, 1(3): 375-379.
[51] [51] QIAN C C, LI L H, GAO M, et al. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors[J]. Nano Energy, 2019, 63: 103885.
[52] [52] LADD C, SO J H, MUTH J, et al. 3D printing of free standing liquid metal microstructures[J]. Adv Mater, 2013, 25(36): 5081-5085.
[53] [53] ZHAKEYEV A, WANG P, ZHANG L, et al. Additive manufacturing: unlocking the evolution of energy materials[J]. Adv Sci, 2017, 4(10): 1700187.
[54] [54] CHANG P, MEI H, ZHOU S, et al. 3D printed electrochemical energy storage devices[J]. J Mater Chem A, 2019, 7(9): 4230-4258.
[55] [55] LI D, LAI W Y, ZHANG Y Z, et al. Printable transparent conductive films for flexible electronics[J]. Adv Mater, 2018, 30(10): 1704738.
[56] [56] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater, 2011, 23(37): 4248-4253.
[57] [57] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2): 1322-1331.
[58] [58] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505.
[59] [59] GHIDIU M, NAGUIB M, SHI C, et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene) [J]. Chem Commun, 2014, 50(67): 9517-9520.
[60] [60] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. J Am Chem Soc, 2013, 135(43): 15966-15969.
[61] [61] LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. P Natl Acad Sci USA, 2014, 111(47): 16676-16681.
[62] [62] ZHAO M Q, TORELLI M, REN C E, et al. 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage[J]. Nano Energy, 2016, 30: 603-613.
[63] [63] NAGUIB M, COME J, DYATKIN B, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries[J]. Electrochem Commun, 2012, 16(1): 61-64.
[64] [64] ZHANG Y Z, WANG Y, JIANG Q, et al. MXene printing and patterned coating for device applications[J]. Adv Mater, 2020, 32(21): 1908486.
[65] [65] LIU S R, SHI X L, LI X R, et al. A general gelation strategy for 1D nanowires: dynamically stable functional gels for 3D printing flexible electronics[J]. Nanoscale, 2018, 10(43): 20096-20107.
[66] [66] YANG W J, YANG J, BYUN J J, et al. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors[J]. Adv Mater, 2019, 31(37): 8.
[67] [67] LI X R, LI H P, FAN X Q, et al. 3D-printed stretchable micro-supercapacitor with remarkable areal performance[J]. Adv Energy Mater, 2020, 10(14): 12.
[68] [68] YU L H, FAN Z D, SHAO Y L, et al. Versatile N-doped MXene ink for printed electrochemical energy storage application[J]. Adv Energy Mater, 2019, 9(34): 8.
[69] [69] XIA M, CHEN B, GU, F, et al. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance[J]. ACS Nano, 2020, 14(4): 5111-5120.
[70] [70] FAN Z D, WEI C H, YU L H, et al. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors[J]. ACS Nano, 2020, 14(1): 867-876.
[71] [71] GU Z, ZHOU Z, HUANG Z, et al. Controllable growth of high-quality inorganic perovskite microplate arrays for functional optoelectronics[J]. Adv Mater, 2020, 32(17): 1908006.
[72] [72] RACCICHINI R, VARZI A, PASSERINI S, et al. The role of graphene for electrochemical energy storage[J]. Nat Mater, 2015, 14(3): 271-279.
[73] [73] NIU Z Q, LIU L L, ZHANG L, et al. A universal strategy to prepare functional porous graphene hybrid architectures[J]. Adv Mater, 2014, 26(22): 3681-3687.
[74] [74] JIANG Y Q, XU Z, HUANG T Q, et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices[J]. Adv Funct Mater, 2018, 28(16): 8.
[75] [75] ZHAO J X, ZHANG Y, ZHAO X X, et al. Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities[J]. Adv Funct Mater, 2019, 29(26): 7.
[76] [76] YUN X W, LU B C, XIONG Z Y, et al. Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor[J]. RSC Adv, 2019, 9(50): 29384- 29395.
[77] [77] VERNARDOU D, KENANAKIS G. Electrochemistry studies of hydrothermally grown ZnO on 3D-printed graphene[J]. Nanomaterials, 2019, 9(7): 8.
[78] [78] YAO B, CHANDRASEKARAN S, ZHANG J, et al. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading[J]. Joule, 2019, 3(2): 459-470.
[79] [79] STROMBERG L R, HONDRED J A, SANBORN D, et al. Stamped multilayer graphene laminates for disposable in-field electrodes: application to electrochemical sensing of hydrogen peroxide and glucose[J]. Microchim Acta, 2019, 186(8): 13.
[80] [80] REWATKAR P, GOEL S. Next-generation 3D printed microfluidic membraneless enzymatic biofuel cell: cost-effective and rapid approach[J]. Ieee T Electron Dev, 2019, 66(8): 3628-3635.
[81] [81] BROWN E, YAN P L, TEKIK H, et al. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes[J]. Mater Des, 2019, 170: 10.
[82] [82] LACEY S D, KIRSCH D J, LI Y, et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes[J]. Adv Mater, 2018, 30(12): 1705651.
[83] [83] FOO C, LIM H N, MAHDI M A, et al. Three-dimensional printed electrode and its novel applications in electronic devices[J]. Sci Rep, 2018, 8: 11.
[84] [84] BASKAKOV S A, BASKAKOVA Y V, LYSKOV N V, et al. Metal-free current collectors based on graphene materials for supecapacitors produced by 3D printing[J]. Russ J Phys Chem A, 2017, 91(10): 1966-1970.
[85] [85] XU R P, LI Y Q, TANG J X. Recent advances in flexible organic light-emitting diodes[J]. J Mater Chem C, 2016, 4(39): 9116-9142.
[86] [86] ZHANG Y C, ZHAO Y S, WU D, et al. Homogeneous freestanding luminescent perovskite organogel with superior water stability[J]. Adv Mater, 2019, 31(37): 8.
[87] [87] KONG Y L, TAMARGO I A, KIM H, et al. 3D printed quantum dot light-emitting diodes[J]. Nano Lett, 2014, 14(12): 7017-7023.
[88] [88] QIN H T, DONG J Y, LEE Y S. Fabrication and electrical characterization of multi-layer capacitive touch sensors on flexible substrates by additive e-jet printing[J]. J Manuf Process, 2017, 28: 479-485.
[89] [89] FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator! [J]. Nano Energy, 2012, 1(2): 328-334.
[90] [90] ZHOU Q T, PARK J G, KIM K N, et al. Transparent-flexible- multimodal triboelectric nanogenerators for mechanical energy harvesting and self-powered sensor applications[J]. Nano Energy, 2018, 48: 471-480.
[91] [91] CUI H, HENSLEIGH R, YAO D, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response[J]. Nat Mater, 2019, 18(3): 234-241.
[92] [92] LIN C H, KANG C Y, WU T Z, et al. Giant optical anisotropy of perovskite nanowire array films[J]. Adv Funct Mater, 2020, 30(14): 1909275.
[93] [93] KIM H, MOON J, LEE K, et al. 3D printed masks and transfer stamping process to enable the fabrication of the hemispherical organic photodiodes[J]. Adv Mater Technol, 2017, 2(9): 1700090.
Get Citation
Copy Citation Text
WU Yu, LIN Aiping, ZHAO Danjiao, FAN Lanlan, ZHANG Jidi, WANG Shufen, CAO Lei, GU Feng. Additive Manufacturing of Optoelectronic Functional Thin Films and Devices[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1715
Category:
Received: Dec. 13, 2021
Accepted: --
Published Online: Dec. 6, 2022
The Author Email:
CSTR:32186.14.