Journal of the Chinese Ceramic Society, Volume. 50, Issue 6, 1715(2022)

Additive Manufacturing of Optoelectronic Functional Thin Films and Devices

WU Yu1... LIN Aiping1, ZHAO Danjiao1, FAN Lanlan1, ZHANG Jidi2, WANG Shufen1, CAO Lei1, and GU Feng12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(89)

    [1] [1] SASABE H, KIDO J, Development of high performance OLEDs for general lighting[J]. J Mater Chem C, 2013, 1(9): 1699-1707.

    [2] [2] ZHAN Z, AN J, WEI Y, et al. Inkjet-printed optoelectronics[J]. Nanoscale, 2017, 9(3): 965-993.

    [3] [3] PANG Y K, CAO Y T, CHU Y H, et al. Additive manufacturing of batteries[J]. Adv Funct Mater, 2019, 1(30): 1906244.

    [4] [4] LIU J, YANG Z, YE B, et al. A review of stability-enhanced luminescent materials: fabrication and optoelectronic applications[J]. J Mater Chem C, 2019, 7(17): 4934-4955.

    [5] [5] RIM Y S, BAE S H, CHEN H, et al. Recent progress in materials and devices toward printable and flexible sensors[J]. Adv Mater, 2016, 28(22): 4415-40.

    [6] [6] QIAO Y, GUO H. Upconversion properties of Y2O3: Er films prepared by sol-gel method[J]. J Rare Earths, 2009, 27(3): 406-410.

    [7] [7] KY?MEN T, HANAYA M, TAKASHIMA H. Electroluminescence near interfaces between (Ca, Sr)TiO3: Pr phosphor and SnO2: Sb transparent conductor thin films prepared by sol-gel and spin-coating methods[J]. J Lumin, 2014, 149: 133-137.

    [8] [8] MIYATA T, NAKATANI T, MINAMI T. Manganese-activated gallium oxide electroluminescent phosphor thin films prepared using various deposition methods[J]. Thin Solid Films, 2000, 373(1): 145-149.

    [9] [9] MINAMI T, KOBAYASHI Y, MIYATA T, et al. High-luminance thin-film electroluminescent devices using Y2O3: Mn phosphor[J]. Thin Solid Films, 2003, 443(1): 91-96.

    [10] [10] NOMOTO J I, HIRANO T, MIYATA T, et al. Preparation of Al-doped ZnO transparent electrodes suitable for thin-film solar cell applications by various types of magnetron sputtering depositions[J]. Thin Solid Films, 2011, 520(5): 1400-1406.

    [11] [11] MIYATA T, ISHINO J I, SAHARA K, et al. Color control of emissions from rare earth-co-doped La2O3: Bi phosphor thin films prepared by magnetron sputtering[J]. Thin Solid Films, 2011, 519(22): 8095-8099.

    [12] [12] LEIJTENS T, EPERON G E, NOEL N K, et al. Stability of metal halide perovskite solar cells[J]. Adv Energy Mater, 2015, 5(20): 23.

    [13] [13] GATHER M C, KOHNEN A, MEERHOLZ K. White organic light-emitting diodes[J]. Adv Mater, 2011, 23(2): 233-248.

    [14] [14] KIM D, JUNG H J, PARK I J, et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites[J]. Science, 2020, 368(6487): 155.

    [16] [16] WEIJER P, BOUTEN P C P, UNNIKRISHNAN S, et al. High-performance thin-film encapsulation for organic light-emitting diodes[J]. Org Electron, 2017, 44: 94-98.

    [17] [17] DENG Y H, ZHENG X P, BAI Y, et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules[J]. Nat Energy, 2018, 3(7): 560-566.

    [21] [21] SINGH M, HARING A P, TONG Y, et al. Additive manufacturing of mechanically isotropic thin films and membranes via microextrusion 3D printing of polymer solutions[J]. ACS Appl Mater Interfaces, 2019, 11(6): 6652-6661.

    [22] [22] BRUBAKER C D, NEWCOME K N, JENNINGS G K, et al. 3D-printed alternating current electroluminescent devices[J]. J Mater Chem C, 2019, 7(19): 5573-5578.

    [24] [24] YANG J, CHOI M K, KIM D H, et al. Designed assembly and integration of colloidal nanocrystals for device applications[J]. Adv Mater, 2016, 28(6): 1176-1207.

    [25] [25] NI Z Y, BAO C X, LIU Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells[J]. Science, 2020, 367(6484): 1352-1358.

    [26] [26] DOHERTY T A S, WINCHESTER A J, MACPHERSON S, et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites[J]. Nature, 2020, 580(7803): 360-366.

    [27] [27] CAMPOSEO A, PERSANO L, FARSARI M, et al. Additive manufacturing: applications and directions in photonics and optoelectronics[J]. Adv Opt Mater, 2019, 7(1): 1800419.

    [28] [28] MATHIES F, LIST-KRATOCHVIL E J W, UNGER E L. Advances in inkjet-printed metal halide perovskite photovoltaic and optoelectronic devices[J]. Energy Technol, 2019, 8(4): 1900991.

    [29] [29] XU X F, SUN L Y, SHEN K, et al. Organic and hybrid organic-inorganic flexible optoelectronics: Recent advances and perspectives[J]. Synth Met, 2019, 256: 116137.

    [30] [30] WU Y, ZHAO D J, ZHANG J D, et al. Microscale curling and alignment of Ti3C2Tx MXene by confining aerosol droplets for planar micro-supercapacitors[J]. ACS Omega, 2021, 6(48): 33067-33074.

    [31] [31] GIACHINI P, GUPTA S S, WANG W, et al. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients[J]. Sci Adv, 2020, 6(8): 11.

    [32] [32] ERVIN M H, LE L T, LEE W Y. Inkjet-printed flexible graphene-based supercapacitor[J]. Electrochim Acta, 2014, 147: 610-616.

    [33] [33] ZHANG B, HE J K, LI X, et al. Micro/nanoscale electrohydrodynamic printing: from 2D to 3D[J]. Nanoscale, 2016, 8(34): 15376-15388.

    [34] [34] DEINER L J, REITZ T L. Inkjet and aerosol jet printing of electrochemical devices for energy conversion and storage[J]. Adv Eng Mater, 2017, 19(7): 1600878.

    [35] [35] SECOR E B. Principles of aerosol jet printing[J]. Flex Print Electron, 2018, 3(3): 035002.

    [36] [36] CAO C Y, ANDREWS J B, FRANKLIN A D. Completely printed, flexible, stable, and hysteresis-free carbon nanotube thin-film transistors via aerosol jet printing[J]. Adv Electron Mater, 2017, 3(5): 1700057.

    [37] [37] SINGH M, HAVERINEN H M, DHAGAT P, et al. Inkjet printing-process and its applications[J]. Adv Mater, 2010, 22(6): 673-685.

    [38] [38] TEKIN E, SMITH P J, SCHUBERT U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles[J]. Soft Matter, 2008, 4(4): 703-713.

    [39] [39] CHENG Z, XING R, HOU Z, et al. Patterning of light-emitting YVO4: Eu3+ thin films via inkjet printing[J]. J Phys Chem Lett, 2010, 114(21): 9883-9888.

    [40] [40] XIONG X Y, WEI C T, XIE L M, et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface[J]. Org Electron, 2019, 73: 247-254.

    [41] [41] KO S H, CHUNG J, HOTZ N, et al. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication[J]. J Micromech Microeng, 2010, 20(12): 125010.

    [42] [42] GALLIKER P, SCHNEIDER J, EGHLIDI H, et al. Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets[J]. Nat Commun, 2012, 3: 9.

    [43] [43] PARK J U, HARDY M, KANG S J, et al. High-resolution electrohydrodynamic jet printing[J]. Nat Mater, 2007, 6(10): 782-789.

    [44] [44] AN B W, KIM K, LEE H, et al. High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks[J]. Adv Mater, 2015, 27(29): 4322-4328.

    [45] [45] SCHNEIDER J, ROHNER P, THUREJA D, et al. Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes[J]. Adv Funct Mater, 2016, 26(6): 833-840.

    [46] [46] AN H S, PARK Y G, KIM K, et al. High-resolution 3D printing of freeform, transparent displays in ambient air[J]. Adv Sci, 2019, 6(23): 1901603.

    [47] [47] CHEN M J, LEE H, YANG J, et al. Parallel, multi-material electrohydrodynamic 3D nanoprinting[J]. Small, 2020, 16(13): 1906402.

    [48] [48] GRATSON G M, XU M J, LEWIS J A. Microperiodic structures-direct writing of three-dimensional webs[J]. Nature, 2004, 428(6981): 386-386.

    [49] [49] HU J, YU M F. Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds[J]. Science, 2010, 329(5989): 313-316.

    [50] [50] KIM J T, PYO J, RHO J, et al. Three-dimensional writing of highly stretchable organic nanowires[J]. ACS Macro Lett, 2012, 1(3): 375-379.

    [51] [51] QIAN C C, LI L H, GAO M, et al. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors[J]. Nano Energy, 2019, 63: 103885.

    [52] [52] LADD C, SO J H, MUTH J, et al. 3D printing of free standing liquid metal microstructures[J]. Adv Mater, 2013, 25(36): 5081-5085.

    [53] [53] ZHAKEYEV A, WANG P, ZHANG L, et al. Additive manufacturing: unlocking the evolution of energy materials[J]. Adv Sci, 2017, 4(10): 1700187.

    [54] [54] CHANG P, MEI H, ZHOU S, et al. 3D printed electrochemical energy storage devices[J]. J Mater Chem A, 2019, 7(9): 4230-4258.

    [55] [55] LI D, LAI W Y, ZHANG Y Z, et al. Printable transparent conductive films for flexible electronics[J]. Adv Mater, 2018, 30(10): 1704738.

    [56] [56] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater, 2011, 23(37): 4248-4253.

    [57] [57] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano, 2012, 6(2): 1322-1331.

    [58] [58] LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505.

    [59] [59] GHIDIU M, NAGUIB M, SHI C, et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene) [J]. Chem Commun, 2014, 50(67): 9517-9520.

    [60] [60] NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. J Am Chem Soc, 2013, 135(43): 15966-15969.

    [61] [61] LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. P Natl Acad Sci USA, 2014, 111(47): 16676-16681.

    [62] [62] ZHAO M Q, TORELLI M, REN C E, et al. 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage[J]. Nano Energy, 2016, 30: 603-613.

    [63] [63] NAGUIB M, COME J, DYATKIN B, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries[J]. Electrochem Commun, 2012, 16(1): 61-64.

    [64] [64] ZHANG Y Z, WANG Y, JIANG Q, et al. MXene printing and patterned coating for device applications[J]. Adv Mater, 2020, 32(21): 1908486.

    [65] [65] LIU S R, SHI X L, LI X R, et al. A general gelation strategy for 1D nanowires: dynamically stable functional gels for 3D printing flexible electronics[J]. Nanoscale, 2018, 10(43): 20096-20107.

    [66] [66] YANG W J, YANG J, BYUN J J, et al. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors[J]. Adv Mater, 2019, 31(37): 8.

    [67] [67] LI X R, LI H P, FAN X Q, et al. 3D-printed stretchable micro-supercapacitor with remarkable areal performance[J]. Adv Energy Mater, 2020, 10(14): 12.

    [68] [68] YU L H, FAN Z D, SHAO Y L, et al. Versatile N-doped MXene ink for printed electrochemical energy storage application[J]. Adv Energy Mater, 2019, 9(34): 8.

    [69] [69] XIA M, CHEN B, GU, F, et al. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance[J]. ACS Nano, 2020, 14(4): 5111-5120.

    [70] [70] FAN Z D, WEI C H, YU L H, et al. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors[J]. ACS Nano, 2020, 14(1): 867-876.

    [71] [71] GU Z, ZHOU Z, HUANG Z, et al. Controllable growth of high-quality inorganic perovskite microplate arrays for functional optoelectronics[J]. Adv Mater, 2020, 32(17): 1908006.

    [72] [72] RACCICHINI R, VARZI A, PASSERINI S, et al. The role of graphene for electrochemical energy storage[J]. Nat Mater, 2015, 14(3): 271-279.

    [73] [73] NIU Z Q, LIU L L, ZHANG L, et al. A universal strategy to prepare functional porous graphene hybrid architectures[J]. Adv Mater, 2014, 26(22): 3681-3687.

    [74] [74] JIANG Y Q, XU Z, HUANG T Q, et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices[J]. Adv Funct Mater, 2018, 28(16): 8.

    [75] [75] ZHAO J X, ZHANG Y, ZHAO X X, et al. Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities[J]. Adv Funct Mater, 2019, 29(26): 7.

    [76] [76] YUN X W, LU B C, XIONG Z Y, et al. Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor[J]. RSC Adv, 2019, 9(50): 29384- 29395.

    [77] [77] VERNARDOU D, KENANAKIS G. Electrochemistry studies of hydrothermally grown ZnO on 3D-printed graphene[J]. Nanomaterials, 2019, 9(7): 8.

    [78] [78] YAO B, CHANDRASEKARAN S, ZHANG J, et al. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading[J]. Joule, 2019, 3(2): 459-470.

    [79] [79] STROMBERG L R, HONDRED J A, SANBORN D, et al. Stamped multilayer graphene laminates for disposable in-field electrodes: application to electrochemical sensing of hydrogen peroxide and glucose[J]. Microchim Acta, 2019, 186(8): 13.

    [80] [80] REWATKAR P, GOEL S. Next-generation 3D printed microfluidic membraneless enzymatic biofuel cell: cost-effective and rapid approach[J]. Ieee T Electron Dev, 2019, 66(8): 3628-3635.

    [81] [81] BROWN E, YAN P L, TEKIK H, et al. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes[J]. Mater Des, 2019, 170: 10.

    [82] [82] LACEY S D, KIRSCH D J, LI Y, et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes[J]. Adv Mater, 2018, 30(12): 1705651.

    [83] [83] FOO C, LIM H N, MAHDI M A, et al. Three-dimensional printed electrode and its novel applications in electronic devices[J]. Sci Rep, 2018, 8: 11.

    [84] [84] BASKAKOV S A, BASKAKOVA Y V, LYSKOV N V, et al. Metal-free current collectors based on graphene materials for supecapacitors produced by 3D printing[J]. Russ J Phys Chem A, 2017, 91(10): 1966-1970.

    [85] [85] XU R P, LI Y Q, TANG J X. Recent advances in flexible organic light-emitting diodes[J]. J Mater Chem C, 2016, 4(39): 9116-9142.

    [86] [86] ZHANG Y C, ZHAO Y S, WU D, et al. Homogeneous freestanding luminescent perovskite organogel with superior water stability[J]. Adv Mater, 2019, 31(37): 8.

    [87] [87] KONG Y L, TAMARGO I A, KIM H, et al. 3D printed quantum dot light-emitting diodes[J]. Nano Lett, 2014, 14(12): 7017-7023.

    [88] [88] QIN H T, DONG J Y, LEE Y S. Fabrication and electrical characterization of multi-layer capacitive touch sensors on flexible substrates by additive e-jet printing[J]. J Manuf Process, 2017, 28: 479-485.

    [89] [89] FAN F R, TIAN Z Q, WANG Z L. Flexible triboelectric generator! [J]. Nano Energy, 2012, 1(2): 328-334.

    [90] [90] ZHOU Q T, PARK J G, KIM K N, et al. Transparent-flexible- multimodal triboelectric nanogenerators for mechanical energy harvesting and self-powered sensor applications[J]. Nano Energy, 2018, 48: 471-480.

    [91] [91] CUI H, HENSLEIGH R, YAO D, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response[J]. Nat Mater, 2019, 18(3): 234-241.

    [92] [92] LIN C H, KANG C Y, WU T Z, et al. Giant optical anisotropy of perovskite nanowire array films[J]. Adv Funct Mater, 2020, 30(14): 1909275.

    [93] [93] KIM H, MOON J, LEE K, et al. 3D printed masks and transfer stamping process to enable the fabrication of the hemispherical organic photodiodes[J]. Adv Mater Technol, 2017, 2(9): 1700090.

    Tools

    Get Citation

    Copy Citation Text

    WU Yu, LIN Aiping, ZHAO Danjiao, FAN Lanlan, ZHANG Jidi, WANG Shufen, CAO Lei, GU Feng. Additive Manufacturing of Optoelectronic Functional Thin Films and Devices[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1715

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 13, 2021

    Accepted: --

    Published Online: Dec. 6, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics