Laser & Optoelectronics Progress, Volume. 61, Issue 6, 0618003(2024)

Lensless Coded Ptychographic Microscopy Imaging: Principle and Recent Progress (Invited)

Chengfei Guo1,2、*, Jingyan Li1, Shaowei Jiang3、**, Xiaopeng Shao1,2、***, and Guoan Zheng4
Author Affiliations
  • 1Hangzhou Institute of Technology, Xidian University, Hangzhou 311231, Zhejiang, China
  • 2School of Optoelectronic Engineering, Xidian University, Xi'an 710071, Shaanxi, China
  • 3School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
  • 4Department of Biomedical Engineering, University of Connecticut, Storrs06269, USA
  • show less
    References(97)

    [1] Sayre D. Some implications of a theorem due to Shannon[J]. Acta Crystallographica, 5, 843(1952).

    [2] Hauptman H A. The phase problem of X-ray crystallography[J]. Reports on Progress in Physics, 54, 1427(1991).

    [3] Hoppe W. Diffraction in inhomogeneous primary wave fields. 1. Principle of phase determination from electron diffraction interference[J]. Acta Crystallographica Section A, 25, 495-501(1969).

    [4] Gerchberg R. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [5] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 3, 27-29(1978).

    [6] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [7] Fienup J R, Wackerman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 3, 1897-1907(1986).

    [8] Fienup J R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint[J]. Journal of the Optical Society of America A, 4, 118-123(1987).

    [9] Miao J W, Charalambous P, Kirz J et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 400, 342-344(1999).

    [10] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).

    [11] Pan A, Zhang Y, Zhao T Y et al. Quantitative phase microscopy imaging based on ptychography[J]. Laser & Optoelectronics Progress, 54, 040001(2017).

    [12] Wang T B, Jiang S W, Song P M et al. Optical ptychography for biomedical imaging: recent progress and future directions[J]. Biomedical Optics Express, 14, 489-532(2023).

    [13] Rodenburg J M, Hurst A C, Cullis A G et al. Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 98, 034801(2007).

    [14] Thibault P, Dierolf M, Menzel A et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 321, 379-382(2008).

    [15] Beckers M, Senkbeil T, Gorniak T et al. Chemical contrast in soft X-ray ptychography[J]. Physical Review Letters, 107, 208101(2011).

    [16] Takahashi Y, Suzuki A, Furutaku S et al. High-resolution and high-sensitivity phase-contrast imaging by focused hard X-ray ptychography with a spatial filter[J]. Applied Physics Letters, 102, 094102(2013).

    [17] Suzuki A, Furutaku S, Shimomura K et al. High-resolution multislice X-ray ptychography of extended thick objects[J]. Physical Review Letters, 112, 053903(2014).

    [18] Tsai E H R, Usov I, Diaz A et al. X-ray ptychography with extended depth of field[J]. Optics Express, 24, 29089-29108(2016).

    [19] Pfeiffer F. X-ray ptychography[J]. Nature Photonics, 12, 9-17(2018).

    [20] Maiden A M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 29, 1606-1614(2012).

    [21] Godden T M, Suman R, Humphry M J et al. Ptychographic microscope for three-dimensional imaging[J]. Optics Express, 22, 12513-12523(2014).

    [22] Li P, Batey D J, Edo T B et al. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography[J]. Ultramicroscopy, 158, 1-7(2015).

    [23] Dierolf M, Menzel A, Thibault P et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 467, 436-439(2010).

    [24] Esmaeili M, Fløystad J B, Diaz A et al. Ptychographic X-ray tomography of silk fiber hydration[J]. Macromolecules, 46, 434-439(2013).

    [25] Trtik P, Diaz A, Guizar-Sicairos M et al. Density mapping of hardened cement paste using ptychographic X-ray computed tomography[J]. Cement and Concrete Composites, 36, 71-77(2013).

    [26] Holler M, Diaz A, Guizar-Sicairos M et al. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution[J]. Scientific Reports, 4, 3857(2014).

    [27] Diaz A, Malkova B, Holler M et al. Three-dimensional mass density mapping of cellular ultrastructure by ptychographic X-ray nanotomography[J]. Journal of Structural Biology, 192, 461-469(2015).

    [28] Deng J J, Lo Y H, Gallagher-Jones M et al. Correlative 3D X-ray fluorescence and ptychographic tomography of frozen-hydrated green algae[J]. Science Advances, 4, eaau4548(2018).

    [29] Li P, Maiden A. Multi-slice ptychographic tomography[J]. Scientific Reports, 8, 2049(2018).

    [30] Shimomura K, Hirose M, Higashino T et al. Three-dimensional iterative multislice reconstruction for ptychographic X-ray computed tomography[J]. Optics Express, 26, 31199-31208(2018).

    [31] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).

    [32] Thibault P, Dierolf M, Bunk O et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 109, 338-343(2009).

    [33] Takahashi Y, Suzuki A, Furutaku S et al. Bragg X-ray ptychography of a silicon crystal: Visualization of the dislocation strain field and the production of a vortex beam[J]. Physical Review B, 87, 121201(2013).

    [34] Holt M V, Hruszkewycz S O, Murray C E et al. Strain imaging of nanoscale semiconductor heterostructures with X-ray Bragg projection ptychography[J]. Physical Review Letters, 112, 165502(2014).

    [35] Chamard V, Allain M, Godard P et al. Strain in a silicon-on-insulator nanostructure revealed by 3D X-ray Bragg ptychography[J]. Scientific Reports, 5, 9827(2015).

    [36] Hruszkewycz S O, Allain M, Holt M V et al. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography[J]. Nature Materials, 16, 244-251(2017).

    [37] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 494, 68-71(2013).

    [38] Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicroscopy, 138, 13-21(2014).

    [39] Li P, Maiden A. Lensless LED matrix ptychographic microscope: problems and solutions[J]. Applied Optics, 57, 1800-1806(2018).

    [40] Pan X C, Liu C, Xiao W G et al. Recent developments in coherent diffraction imaging: ptychographic iterative engine[J]. Laser & Optoelectronics Progress, 59, 2200001(2022).

    [41] Pan X Y, Bi X X, Dong Z et al. Review of development for ptychography algorithm[J]. Acta Physica Sinica, 72, 054202(2023).

    [42] Jiang Y, Chen Z, Han Y M et al. Electron ptychography of 2D materials to deep sub-ångström resolution[J]. Nature, 559, 343-349(2018).

    [43] Chen Z, Jiang Y, Shao Y T et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations[J]. Science, 372, 826-831(2021).

    [44] Jiang S W, Guo C F, Song P M et al. Resolution-enhanced parallel coded ptychography for high-throughput optical imaging[J]. ACS Photonics, 8, 3261-3271(2021).

    [45] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [46] Ou X Z, Zheng G A, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 22, 4960-4972(2014).

    [47] Zheng G A, Ou X Z, Horstmeyer R et al. Fourier ptychographic microscopy: a gigapixel superscope for biomedicine[J]. Optics and Photonics News, 25, 26-33(2014).

    [48] Zheng G A. Breakthroughs in photonics 2013: Fourier ptychographic imaging[J]. IEEE Photonics Journal, 6, 0701207(2014).

    [49] Dong S Y, Shiradkar R, Nanda P et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J]. Biomedical Optics Express, 5, 1757-1767(2014).

    [50] Dong S Y, Nanda P, Shiradkar R et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography[J]. Optics Express, 22, 20856-20870(2014).

    [51] Dong S Y, Horstmeyer R, Shiradkar R et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Optics Express, 22, 13586-13599(2014).

    [52] Dong S Y, Bian Z C, Shiradkar R et al. Sparsely sampled Fourier ptychography[J]. Optics Express, 22, 5455-5464(2014).

    [53] Ou X Z, Horstmeyer R, Yang C et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 38, 4845-4848(2013).

    [54] Horstmeyer R, Ou X Z, Chung J et al. Overlapped Fourier coding for optical aberration removal[J]. Optics Express, 22, 24062-24080(2014).

    [55] Bian L H, Suo J L, Zheng G A et al. Fourier ptychographic reconstruction using Wirtinger flow optimization[J]. Optics Express, 23, 4856-4866(2015).

    [56] Bian L H, Suo J L, Situ G H et al. Content adaptive illumination for Fourier ptychography[J]. Optics Letters, 39, 6648-6651(2014).

    [57] Guo K K, Bian Z C, Dong S Y et al. Microscopy illumination engineering using a low-cost liquid crystal display[J]. Biomedical Optics Express, 6, 574-579(2015).

    [58] Guo K K, Dong S Y, Nanda P et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator[J]. Optics Express, 23, 6171-6180(2015).

    [59] Guo K K, Dong S Y, Zheng G A. Fourier ptychography for brightfield, phase, darkfield, reflective, multi-slice, and fluorescence imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 77-88(2016).

    [60] Horstmeyer R, Ou X Z, Zheng G A et al. Digital pathology with Fourier ptychography[J]. Computerized Medical Imaging and Graphics, 42, 38-43(2015).

    [61] Ou X Z, Horstmeyer R, Zheng G A et al. High numerical aperture Fourier ptychography: principle, implementation and characterization[J]. Optics Express, 23, 3472-3491(2015).

    [62] Guo K K, Jiang S W, Zheng G A. Multilayer fluorescence imaging on a single-pixel detector[J]. Biomedical Optics Express, 7, 2425-2431(2016).

    [63] Guo K K, Zhang Z B, Jiang S W et al. 13-fold resolution gain through turbid layer via translated unknown speckle illumination[J]. Biomedical Optics Express, 9, 260-275(2017).

    [64] Jiang S W, Guo K K, Liao J et al. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow[J]. Biomedical Optics Express, 9, 3306-3319(2018).

    [65] Song P M, Jiang S W, Zhang H et al. Full-field Fourier ptychography (FFP): Spatially varying pupil modeling and its application for rapid field-dependent aberration metrology[J]. APL Photonics, 4, 050802(2019).

    [66] Zheng G A, Shen C, Jiang S W et al. Concept, implementations and applications of Fourier ptychography[J]. Nature Reviews Physics, 3, 207-223(2021).

    [67] Chen J R, Wang A Y, Pan A et al. Rapid full-color Fourier ptychographic microscopy via spatially filtered color transfer[J]. Photonics Research, 10, 2410-2421(2022).

    [68] Tian Z M, Zhao M, Yang D et al. Optical remote imaging via Fourier ptychography[J]. Photonics Research, 11, 2072-2083(2023).

    [69] Zhang F C, Pedrini G, Osten W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation[J]. Physical Review A, 75, 043805(2007).

    [70] Xu W H, Lin H X, Wang H Y et al. Super-resolution near-field ptychography[J]. Optics Express, 28, 5164-5178(2020).

    [71] Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine[J]. Optica, 4, 736-745(2017).

    [72] Jiang S W, Zhu J K, Song P M et al. Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation[J]. Lab on a Chip, 20, 1058-1065(2020).

    [73] Song P M, Wang R H, Zhu J K et al. Super-resolved multispectral lensless microscopy via angle-tilted, wavelength-multiplexed ptychographic modulation[J]. Optics Letters, 45, 3486-3489(2020).

    [74] Jiang S W, Guo C F, Bian Z C et al. Ptychographic sensor for large-scale lensless microbial monitoring with high spatiotemporal resolution[J]. Biosensors and Bioelectronics, 196, 113699(2022).

    [75] Song P M, Guo C F, Jiang S W et al. Optofluidic ptychography on a chip[J]. Lab on a Chip, 21, 4549-4556(2021).

    [76] Jiang S W, Guo C F, Song P M et al. High-throughput digital pathology via a handheld, multiplexed, and AI-powered ptychographic whole slide scanner[J]. Lab on a Chip, 22, 2657-2670(2022).

    [77] Jiang S W, Guo C F, Wang T B et al. Blood-coated sensor for high-throughput ptychographic cytometry on a blu-ray disc[J]. ACS Sensors, 7, 1058-1067(2022).

    [78] Song P M, Jiang S W, Wang T B et al. Synthetic aperture ptychography: coded sensor translation for joint spatial-Fourier bandwidth expansion[J]. Photonics Research, 10, 1624-1632(2022).

    [79] Guo C F, Jiang S W, Yang L M et al. Depth-multiplexed ptychographic microscopy for high-throughput imaging of stacked bio-specimens on a chip[J]. Biosensors and Bioelectronics, 224, 115049(2023).

    [80] Jiang S W, Song P M, Wang T B et al. Spatial- and fourier-domain ptychography for high-throughput bio-imaging[J]. Nature Protocols, 18, 2051-2083(2023).

    [81] Wang T B, Song P M, Jiang S W et al. Remote referencing strategy for high-resolution coded ptychographic imaging[J]. Optics Letters, 48, 485-488(2023).

    [82] Bian Z C, Guo C F, Jiang S W et al. Autofocusing technologies for whole slide imaging and automated microscopy[J]. Journal of Biophotonics, 13, e202000227(2020).

    [83] Guo C F, Bian Z C, Jiang S W et al. OpenWSI: a low-cost, high-throughput whole slide imaging system via single-frame autofocusing and open-source hardware[J]. Optics Letters, 45, 260-263(2019).

    [84] Guo C F, Jiang S W, Yang L M et al. Deep learning-enabled whole slide imaging (DeepWSI): oil-immersion quality using dry objectives, longer depth of field, higher system throughput, and better functionality[J]. Optics Express, 29, 39669-39684(2021).

    [85] Guo C F, Jiang S W, Song P M et al. Quantitative multi-height phase retrieval via a coded image sensor[J]. Biomedical Optics Express, 12, 7173-7184(2021).

    [86] Luo W, Greenbaum A, Zhang Y B et al. Synthetic aperture-based on-chip microscopy[J]. Light: Science & Applications, 4, e261(2015).

    [87] Zuo C, Li J J, Sun J S et al. Transport of intensity equation: a tutorial[J]. Optics and Lasers in Engineering, 135, 106187(2020).

    [88] Zuo C, Chen Q. Computational optical imaging: an overview[J]. Infrared and Laser Engineering, 51, 20220110(2022).

    [89] Zuo C, Chen Q. Resolution, super-resolution and spatial bandwidth product expansion: some thoughts from the perspective of computational optical imaging[J]. Chinese Optics, 15, 1105-1166(2022).

    [90] Pantanowitz L, Farahani N, Parwani A. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives[J]. Pathology and Laboratory Medicine International, 23-33(2015).

    [91] Niazi M K K, Parwani A V, Gurcan M N. Digital pathology and artificial intelligence[J]. The Lancet Oncology, 20, e253-e261(2019).

    [92] Horstmeyer R, Chung J, Ou X Z et al. Diffraction tomography with Fourier ptychography[J]. Optica, 3, 827-835(2016).

    [93] Ling R L, Tahir W, Lin H Y et al. High-throughput intensity diffraction tomography with a computational microscope[J]. Biomedical Optics Express, 9, 2130-2141(2018).

    [94] Li J J, Matlock A C, Li Y Z et al. High-speed in vitro intensity diffraction tomography[J]. Advanced Photonics, 1, 066004(2019).

    [95] Matlock A, Tian L. High-throughput, volumetric quantitative phase imaging with multiplexed intensity diffraction tomography[J]. Biomedical Optics Express, 10, 6432-6448(2019).

    [96] Zuo C, Sun J S, Li J J et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography[J]. Optics and Lasers in Engineering, 128, 106003(2020).

    [97] Zhang J C, Fan Y B, Yao J et al. Programmable optical meta-holograms[J]. Nanophotonics, 544(2023).

    Tools

    Get Citation

    Copy Citation Text

    Chengfei Guo, Jingyan Li, Shaowei Jiang, Xiaopeng Shao, Guoan Zheng. Lensless Coded Ptychographic Microscopy Imaging: Principle and Recent Progress (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Microscopy

    Received: Nov. 29, 2023

    Accepted: Dec. 25, 2023

    Published Online: Mar. 22, 2024

    The Author Email: Guo Chengfei (guochengfei@xidian.edu.cn), Jiang Shaowei (jiangsw@hdu.edu.cn), Shao Xiaopeng (xpshao@xidian.edu.cn)

    DOI:10.3788/LOP232582

    Topics