Journal of Innovative Optical Health Sciences, Volume. 18, Issue 1, 2450024(2025)
A prediction model for guiding tumor microwave ablation surgery based on simulation
[2] J. P. Dou, P. Liang, J. Yu. Microwave ablation for liver tumors. Abdom. Radiol., 41, 650-658(2016).
[3] T. Ryu, Y. Takami, Y. Wada et al. Oncological outcomes after hepatic resection and/or surgical microwave ablation for liver metastasis from gastric cancer. Asian J. Surg., 42, 100-105(2019).
[4] F. De Cobelli, P. Marra, F. Ratti et al. Microwave ablation of liver malignancies: Comparison of effects and early outcomes of percutaneous and intraoperative approaches with different liver conditions. Med. Oncol., 34, 49-59(2017).
[5] R. A. Al-Hakim, F. G. Abtin, S. J. Genshaft et al. Defining new metrics in microwave ablation of pulmonary tumors: Ablation work and ablation resistance score. J. Vasc. Interv. Radiol., 27, 1380-1386(2016).
[6] F. H. Cornelis, C. Marcelin, J. C. Bernhard. Microwave ablation of renal tumors: A narrative review of technical considerations and clinical results. Diagn. Interv. Imaging, 98, 287-297(2016).
[8] M. Cavagnaro, C. Amabile, S. Cassarino et al. Influence of the target tissue size on the shape of ex vivo microwave ablation zones. Int. J. Hyperthermia, 31, 1-10(2015).
[9] A. Andreozzi, L. Brunese, M. Iasiello et al. Modeling heat transfer in tumors: A review of thermal therapies. Ann. Biomed. Eng., 47, 676-693(2019).
[12] R. Pinto, V. Lopresto, M. Cavagnaro. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation. Phys. Med. Biol., 60, 3287-3311(2015).
[14] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu. The Finite Element Method: Its Basis and Fundamentals.
[15] J. Sebek, N. Albin, R. Bortel et al. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning. Med. Phys., 43, 2649-2661(2016).
[16] C. A. Felippa. 50 Year classic reprint: An appreciation of R. Courant’s ‘Variational methods for the solution of problems of equilibrium and vibrations,’ 1943. Int. J. Numer. Methods Eng., 37, 2159-2187(2010).
[17] M. Selmi, A. Bajahzar, H. Belmabrouk. Effects of target temperature on thermal damage during temperature-controlled MWA of liver tumor. Case Stud. Therm. Eng., 31, 101821(2022).
[18] M. Radmilović-Radjenović, M. Sabo, M. Prnova, L. Šoltes, B. Radjenović. Finite element analysis of the microwave ablation method for enhanced lung cancer treatment. Cancers, 13, 3500(2021).
[19] C. Chen, M.-A. Yu, L. Qiu, H.-Y. Chen, Z.-L. Zhao, J. Wu, L.-L. Peng, Z.-L. Wang, R.-X. Xiao. Theoretical evaluation of microwave ablation applied on muscle, fat and bone: A numerical study. Appl. Sci., 11, 8271(2021).
[20] X. Li, J. Yu, P. Liang et al. Ultrasound-guided percutaneous microwave ablation assisted by three-dimensional visualization operative treatment planning system and percutaneous transhepatic cholangial drainage with intraductal chilled saline perfusion for larger hepatic hilum hepatoce. Oncotarget, 8, 79742-79749(2017).
[22] A. Seitel, M. Engel, C. M. Sommer et al. Computer-assisted trajectory planning for percutaneous needle insertions. Med. Phys., 38, 3246-3259(2011).
[23] D. Sindram, R. Z. Swan, K. N. Lau et al. Real-time three-dimensional guided ultrasound targeting system for microwave ablation of liver tumors: A human pilot study. HPB, 13, 185-191(2011).
[27] V. Lopresto, R. Pinto, L. Farina et al. Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning. Med. Eng. Phys., 46, 63-70(2017).
[28] S. Sharma, C. D. Sarris. A novel multiphysics optimization-driven methodology for the design of microwave ablation antennas. IEEE J. Multiscale Multiphys. Comput. Tech., 7, 50-62(2022).
[30] Z. Ji, C. L. Brace. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation. Phys. Med. Biol., 56, 5249-5264(2011).
[31] D. M. Dolega, J. Barglik. Computer modeling and simulation of radiofrequency thermal ablation. COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 31, 1087-1095(2012).
[32] C. D. Pinheiro. Influence of thermal-electrical parameter combinations on thermal lesions of radiofrequency tumor ablation. J. Biol. Syst., 25, 327-340(2017).
[33] A. Mohammadi, L. Bianchi, S. Asadi et al. Measurement of ex vivo liver, brain and pancreas thermal properties as function of temperature. Sensors, 21, 4236(2021).
[34] V. Lopresto, R. Pinto, M. Cavagnaro. Experimental characterization of the thermal lesion induced by microwave ablation. Int. J. Hyperthermia, 30, 110-118(2014).
[35] M. Cavagnaro, R. Pinto, V. Lopresto. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation. Phys. Med. Biol., 60, 3287-3311(2015).
[36] S. Reddy Guntur, I. Lee, D.-G. Paeng et al. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation. Ultrasound Med. Biol., 39, 1771-1784(2013).
[37] V. Lopresto, A. Argentieri, R. Pinto et al. Temperature dependence of thermal properties of ex vivo liver tissue up to ablative temperatures. Phys. Med. Biol., 64, 105016(2019).
[38] X. Jin, Y. Li, W. Liu et al. Study on the relationship between reduced scattering coefficient and Young’s modulus of tumors in microwave ablation. Minim. Invasive Ther. Allied Technol., 30, 347-355(2021).
[39] X. Jin, Y. Feng, R. Zhu et al. Temperature control and intermittent time-set protocol optimization for minimizing tissue carbonization in microwave ablation. Int. J. Hyperthermia, 39, 868-879(2022).
[40] Z. Jinzhe, W. Juan, M. Jongjie et al. A method for constructing practical microwave ablation simulation model. Chin. Med. Equip., 36, 36-43(2019).
[41] Z. Jinzhe. The key techniques and basic research of real-time efficacy evaluation in microwave ablation of tumor. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics(2019).
[42] X. Jin, W. Liu, Y. Li et al. Evaluation method of ex vivo porcine liver reduced scattering coefficient during microwave ablation based on temperature. Biomed. Eng./Biomedizinische Technik, 67, 491-501(2022).
[43] Y. Jiang, J. Zhao, W. Li, Y. Yang, J. Liu, Z. Qian. A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: Design, simulation, and experimental research. Med. Biol. Eng. Comput., 55, 2027-2036(2017).
[44] Y. Feng, X. Jin, Q. Yu. Structural design and simulation of 915 MHz microwave ablation needle. 11th Jiangsu Biomedical Photonics Annual Meeting(2022).
[45] H. H. Pennes. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol., 1, 93-122(1948).
[46] J. Zhao, W. Wang, Y. Mu et al. A construction method of practical microwave ablation simulation model. China Med. Equip., 36, 36-43(2019).
[47] S. Etoz, C. L. Brace. Analysis of microwave ablation antenna optimization techniques. Int. J. RF Microw. Comput.-Aided Eng., 28, e21224(2018).
[48] S. K. Hall, E. H. Ooi, S. J. Payne. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. Int. J. Hyperthermia, 31, 538-550(2015).
[49] P. Keangin, P. Rattanadecho, T. Wessapan. An analysis of heat transfer in liver tissue during microwave ablation using single and double slot antenna. Int. Commun. Heat Mass Transfer, 38, 757-766(2011).
Get Citation
Copy Citation Text
Lu Qian, Yamin Yang, Pan Chen, Jia Liu, Xiaofei Jin, Zhiyu Qian, Chunxiao Chen. A prediction model for guiding tumor microwave ablation surgery based on simulation[J]. Journal of Innovative Optical Health Sciences, 2025, 18(1): 2450024
Category: Research Articles
Received: Jun. 27, 2024
Accepted: Sep. 1, 2024
Published Online: Feb. 21, 2025
The Author Email: Qian Zhiyu (zhiyu@nuaa.edu.cn), Chen Chunxiao (ccxbme@nuaa.edu.cn)