Journal of Inorganic Materials, Volume. 36, Issue 1, 101(2021)

Modulation of SAPO-34 Property with Activated Seeds and Its Enhanced Lifetime in Methanol to Olefins Reaction

Dongqiang ZHANG, Huihui LU, Na SU, Guixian LI, Dong JI, and Xinhong ZHAO*
References(44)

[1] CORMA A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[D]. Chemical Reviews, 95, 559-614(1995).

[2] AUERBACH S M, CARRADO K A, DUTTA P K[M]. Handbook of Zeolite Science and Technology(2003).

[3] WEITKAMP J, HUNGER M. Acid and Base Catalysis on Zeolites//ČEJKA J, van BEKKUM H, CORMA A, et al[D]. Studies in Surface Science and Catalysis, Vol. 168, Elsevier, 787-835(2007).

[4] STöCKER M. Methanol-to-hydrocarbons: catalytic materials and their behavior[D]. Microporous and Mesoporous Materials, 29, 3-48(1999).

[5] YANG M, FAN D, WEI Y et al. Recent progress in methanol- to-olefins (MTO) catalysts[D]. Advanced Materials, 31, 1902181(2019).

[6] SEO G, KIM J H, JANG H G. Methanol-to-olefin conversion over zeolite catalysts: active intermediates and deactivation[D]. Catalysis Surveys from Asia, 17, 103-118(2013).

[7] SUN Q, XIE Z, YU J. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion[D]. National Science Review, 5, 542-558(2018).

[8] VAN SPEYBROECK V, DE WISPELAERE K, VAN DER MYNSBRUGGE J et al. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study[D]. Chemical Society Reviews, 43, 7326-7357(2014).

[9] LIANG J, LI H, ZHAO S et al. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion[D]. Applied Catalysis, 64, 31-40(1990).

[10] WU P, YANG M, ZHANG W et al. Synthesis of SAPO-34 nanoaggregates with the assistance of an inexpensive three-in-one non-surfactant organosilane[D]. Chemical Communications, 53, 4985-4988(2017).

[11] AGHAEI E, HAGHIGHI M. Effect of crystallization time on properties and catalytic performance of nanostructured SAPO-34 molecular sieve synthesized at high temperatures for conversion of methanol to light olefins[D]. Powder Technology, 269, 358-370(2015).

[12] LI Z, MARTINEZ-TRIGUERO J, CONCEPCION P et al. Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution[D]. Physical Chemistry Chemical Physics, 15, 14670-14680(2013).

[13] WANG C, YANG M, TIAN P et al. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction[D]. Journal of Materials Chemistry A, 3, 5608-5616(2015).

[14] WANG P, LÜ A, HU J et al. The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction[D]. Microporous and Mesoporous Materials, 152, 178-184(2012).

[15] SUN Q, WANG N, XI D et al. Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance[D]. Chemical Communications, 50, 6502-6505(2014).

[16] GUISNET M, COSTA L, RIBEIRO F R. Prevention of zeolite deactivation by coking[D]. Journal of Molecular Catalysis A: Chemical, 305, 69-83(2009).

[17] DAI W, LI N, LI L et al. Unexpected methanol-to-olefin conversion activity of low-silica aluminophosphate molecular sieves[D]. Catalysis Communications, 16, 124-127(2011).

[18] OLSBYE U, BJøRGEN M, SVELLE S et al. Mechanistic insight into the methanol-to-hydrocarbons reaction[D]. Catalysis Today, 106, 108-111(2005).

[19] DAI W, WANG X, WU G et al. Methanol-to-olefin conversion catalyzed by low-silica AlPO-34 with traces of Brønsted acid sites: combined catalytic and spectroscopic investigations[D]. ChemCatChem, 4, 1428-1435(2012).

[20] DAHL I M, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol[D]. Journal of Catalysis, 161, 304-309(1996).

[21] HEREIJERS B P, BLEKEN F, NILSEN M H et al. Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts[D]. Journal of Catalysis, 264, 77-87(2009).

[22] WILSON S, BARGER P. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins[D]. Microporous and Mesoporous Materials, 29, 117-126(1999).

[23] DAHL I M, MOSTAD H, AKPORIAYE D et al. Structural and chemical influences on the MTO reaction: a comparison of chabazite and SAPO-34 as MTO catalysts[D]. Microporous and Mesoporous Materials, 29, 185-190(1999).

[24] IZADBAKHSH A, FARHADI F, KHORASHEH F et al. Effect of SAPO-34’s composition on its physico-chemical properties and deactivation in MTO process[D]. Applied Catalysis A: General, 364, 48-56(2009).

[25] KANG M. Methanol conversion on metal-incorporated SAPO-34s (MeAPSO-34s)[D]. Journal of Molecular Catalysis A: Chemical, 160, 437-444(2000).

[26] MIRZA K, GHADIRI M, HAGHIGHI M et al. Hydrothermal synthesize of modified Fe, Ag and K-SAPO-34 nanostructured catalysts used in methanol conversion to light olefins[D]. Microporous and Mesoporous Materials, 260, 155-165(2018).

[27] HUANG H, WANG H, ZHU H et al. Enhanced ethene to propene ratio over Zn-modified SAPO-34 zeolites in methanol-to-olefin reaction[D]. Catalysis Science & Technology, 9, 2203-2210(2019).

[28] INUI T, PHATANASRI S, MATSUDA H. Highly selective synthesis of ethene from methanol on a novel nickel- silicoaluminophosphate catalyst[D]. Chemical Communications, 205-206(1990).

[29] VAN NIEKERK M J, FLETCHER J C, O'CONNOR C T. Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34[D]. Applied Catalysis A: General, 138, 135-145(1996).

[30] MEES F D, DER VOORT P V, COOL P et al. Controlled reduction of the acid site density of SAPO-34 molecular sieve by means of silanation and disilanation[D]. The Journal of Physical Chemistry B, 107, 3161-3167(2003).

[31] HIDAKA T, YOKOSE E. Catalysts for Methanol Conversion Reactions[D]. Taiwan Patent, TW87111286A, 1997.

[32] SUN Q, WANG N, BAI R et al. Seeding induced nano-sized hierarchical SAPO-34 zeolites: cost-effective synthesis and superior MTO performance[D]. Journal of Materials Chemistry A, 4, 14978-14982(2016).

[33] GAO B, YANG M, QIAO Y et al. A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the methanol-to-olefins (MTO) reaction[D]. Catalysis Science & Technology, 6, 7569-7578(2016).

[34] WU Q, MENG X, GAO X et al. Solvent-free synthesis of zeolites: mechanism and utility[D]. Accounts of Chemical Research, 51, 1396-1403(2018).

[35] JIN Y, SUN Q, QI G et al. Solvent-free synthesis of silicoaluminophosphate zeolites[D]. Angewandte Chemie-International Edition, 52, 9172-9175(2013).

[36] NAJAFI N, ASKARI S, HALLADJ R. Hydrothermal synthesis of nanosized SAPO-34 molecular sieves by different combinations of multi templates[D]. Powder Technology, 254, 324-330(2014).

[37] MENG X, JIN Y, SUN Q et al. Solid-state grinding syntheis for SAPO-34[D]. China Patent, CN201310047582, 4, 2013.

[38] MAJANO G, DARWICHE A, MINTOVA S et al. Seed-induced crystallization of nanosized Na-ZSM-5 crystals[D]. Industrial & Engineering Chemistry Research, 48, 7084-7091(2009).

[39] REN N, YANG Z J, LV X C et al. A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology[D]. Microporous and Mesoporous Materials, 131, 103-114(2010).

[40] QIN Z, PINARD L, BENGHALEM M A et al. Preparation of single crystals “house-of-cards”-like ZSM-5 and their performance in ethanol-to-hydrocarbons conversion[D]. Chemistry of Materials, 31, 4639-4648(2019).

[41] LYU M, YANG C, LIU Z et al. Atmospheric pressure synthesis of nano-scale SAPO-34 catalysts for effective conversion of methanol to light olefins[D]. Sustainable Energy & Fuels, 3, 3101-3108(2019).

[42] SENA F C, DE SOUZA B F, DE ALMEIDA N C et al. Influence of framework composition over SAPO-34 and MeAPSO-34 acidity[D]. Applied Catalysis A: General, 406, 59-62(2011).

[43] SUN Q, MA Y, WANG N. High performance nanosheet-like silicoaluminophosphate molecular sieves: synthesis, 3D EDT structural analysis and MTO catalytic studies[D]. Journal of Materials Chemistry A, 2, 17828-17839(2014).

     WANG P, YANG D, JIE H U et al. Synthesis of SAPO-34 with small and tunable crystallite size by two-step hydrothermal crystallization and its catalytic performance for MTO reaction[D]. Catalysis Today, 212, 62-62(2013).

Tools

Get Citation

Copy Citation Text

Dongqiang ZHANG, Huihui LU, Na SU, Guixian LI, Dong JI, Xinhong ZHAO. Modulation of SAPO-34 Property with Activated Seeds and Its Enhanced Lifetime in Methanol to Olefins Reaction[J]. Journal of Inorganic Materials, 2021, 36(1): 101

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: RESEARCH LETTERS

Received: Feb. 8, 2020

Accepted: --

Published Online: Jan. 21, 2021

The Author Email: Xinhong ZHAO (licpzhaoxh@lut.edu.cn)

DOI:10.15541/jim20200059

Topics