Acta Photonica Sinica, Volume. 54, Issue 2, 0254102(2025)

Modeling of Microvibration Mechanism of Drag-free Control System for Space Gravitational Wave Detection Satellites (Invited)

Zhenglin YANG1...2, Qing LI1,2, Shaolong DENG1,2, Chen WANG3,*, Zhaoguo ZHANG1,2, Lei LIU1,2 and Caiwen MA3 |Show fewer author(s)
Author Affiliations
  • 1School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • 2Shaanxi Aerospace Flight Vehicle Design Key Laboratory, Xi'an 710072, China
  • 3Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
  • show less
    Figures & Tables(23)
    Simulation results of solar radiation pressure perturbation force
    Simulation results of residual gas damping force
    Simulation results of magnetic field coupling disturbance
    Simulation results of fluctuation coupling disturbance in capacitive sensors
    Annual variation curve of solar heat flux for a satellite
    Solenoid valve spool model schematic
    Simulation results of microthruster thrust
    Schematic diagram of the structure of the Tianqin-3 concept satellite
    FEM model of the Tianqin-3 concept satellite
    The first 4 orders of flexible modal shape
    Micro-vibration disturbance transmission model for satellite platform based on state space equations
    Block diagram of the integrated simulation of the drag-free system
    Multi-interference source integration simulation results
    Simulation results of angular response of precision pointing mechanism under each working condition
    PSD plot of angular response of precision pointing mechanism under each working condition
    • Table 1. Satellite orbital parameters

      View table
      View in Article

      Table 1. Satellite orbital parameters

      Semimajor axis/kmEccentricityInclination/(°)Right ascension of the ascending node/(°)Argument of periapsis/(°)Initial trueanomaly/(°)
      100 938.056 4120.000 41194.785 623209.438 2260.061 831325.619 846
    • Table 2. Simulation parameters of residual gas damping force

      View table
      View in Article

      Table 2. Simulation parameters of residual gas damping force

      ParametersValue
      Average intracavity pressure, pave9.77×10-6 Pa
      Cross-sectional area in the direction of the test mass motion, SPM0.002 5 mm2
      Molecular mass of gas inside the cavity, m04.579×10-6 kg/mol
      Average temperature inside the cavity, Tave300 K
      Direction of motionX+
    • Table 3. Magnetic field coupling perturbation simulation parameters

      View table
      View in Article

      Table 3. Magnetic field coupling perturbation simulation parameters

      ParametersValue
      χm10-6
      ρ19 600 kg/m3
      μ01.26×10-6 N/A3
      BSC3×10-6 T/m
      mp2.45 kg
      Mr2×10-8 Am2
      rm0.298 05 m±3.464 μm
    • Table 4. Magnetic field coupling perturbation simulation parameters192021

      View table
      View in Article

      Table 4. Magnetic field coupling perturbation simulation parameters192021

      ParametersValue
      Cx7.417×10-12
      Cg≈7.417×10-12
      C≈6Cx
      d0.003 mm
      Δd10 μm
      Vd0.01 V
      ΔVx10-4 V
    • Table 5. Thermodynamic simulation parameters

      View table
      View in Article

      Table 5. Thermodynamic simulation parameters

      ParametersValue
      Densities, ρ1.75 g/cm3
      Elastic modulus, E337 GPa
      Poisson's ratio, μ0.307
      Absorptance, αAb0.9
      Emissivity, εEMIT0.85
      Coefficient of thermal conductivity, κ10 W/(m·K)
      Specific heat capacity, Cp1.0 J/(kg·K)
      Coefficient of thermal expansion, Ψ1×10-5 K
      Stefan-Boltzmann constant, σ5.67×10-8 W/(m2·K4
      Ambient temperature, T00 K
    • Table 6. Thrust of the microthruster parameters

      View table
      View in Article

      Table 6. Thrust of the microthruster parameters

      ParametersValue
      Valve core mass, mV2 g
      Electromagnetic proportional amplification factor, Kf12
      Coulomb friction force, Ff7 N
      Spring stiffness, Kth6 N/m
      Flow coefficient, Cd0.68
      Thrust range0~10 mN
      Nozzle inlet diameter, D0.112 mm
      Nozzle exit diameter, Do0.5 mm
      Flow rate range0~13.72 μg/s
      Nozzle exit gas velocity, Vcg700 m/s
      Nozzle inlet pressure, p00.6 MPa
      Nozzle exit pressure, pe1.98 Kpa
      Needle valve tip angle, αTE30°
      Electromagnetic valve suction control accuracy10 μN
    • Table 7. Satellite geometric parameters

      View table
      View in Article

      Table 7. Satellite geometric parameters

      ParametersValue
      Satellite mass1 050 kg
      Satellite body diameter3 200 mm
      Satellite body altitude840 mm
      Solar panel diameter5 300 mm
      Telescope diameter400 mm
    • Table 8. Non-zero modal analysis results

      View table
      View in Article

      Table 8. Non-zero modal analysis results

      Modal orderNatural frequency/Hz
      714.53
      815.17
      919.89
      1021.27
      1123.75
      1224.21
      1326.44
      1430.38
      1531.84
      1632.45
    Tools

    Get Citation

    Copy Citation Text

    Zhenglin YANG, Qing LI, Shaolong DENG, Chen WANG, Zhaoguo ZHANG, Lei LIU, Caiwen MA. Modeling of Microvibration Mechanism of Drag-free Control System for Space Gravitational Wave Detection Satellites (Invited)[J]. Acta Photonica Sinica, 2025, 54(2): 0254102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Precise Beam Pointing for Space Gravitational Wave Detection

    Received: Dec. 11, 2024

    Accepted: Feb. 11, 2025

    Published Online: Mar. 25, 2025

    The Author Email: WANG Chen (wangchen@opt.ac.cn)

    DOI:10.3788/gzxb20255402.0254102

    Topics