Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 1109(2022)

Research Progress on Broadband Near-Infrared Luminescence of Glass and Fiber

TAN Linling*... YE Xin and LIN Changgui |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(60)

    [2] [2] HILBERT M, LóPEZ P. The world’s technological capacity to store,communicate, and compute information[J]. Science, 2011, 332(6025):60?65.

    [3] [3] DIANOV E M. Amplification in extended transmission bands using bismuth-doped optical fibers[J]. J Lightwave Technol, 2013, 31(4):681?688.

    [4] [4] DORENBOS P. The 4fn?4fn?15d transitions of the trivalent lanthanides in halogenides and chalcogenides[J]. J Lumin, 2000,91(1-2): 91?106.

    [5] [5] OGASAWARA K, WATANABE S, SAKAI Y, et al. Calculations of complete 4fn and 4fn-15d1 energy level schemes of free trivalent rare-earth ions[J]. Jpn J Appl Phys, 2004, 43(5A): L611?L613.

    [6] [6] PEIJZEL P S, MEIJERINK A, WEGH R, et al. A complete 4fn energy level diagram for all trivalent lanthanide ions[J]. J. Solid State Chem,2005, 178(2): 448?453.

    [8] [8] DEJNEKA M, SAMSON B. Rare-earth-doped fibers for telecommunications applications[J]. MRS Bull, 2013, 24(9): 39-45.

    [9] [9] RANI P R, VENKATESWARLU M, SWAPNA K, et al.NIR photoluminescence studies of Nd3+ doped B2O3-BaF2-PbF2-Al2O3 glasses for 1.063 μm laser applications[J]. J Lumin, 2021, 229: 117701.

    [10] [10] WANG Y, WU J, ZHAO Q, et al. Single-frequency DBR Nd-doped fiber laser at 1120 nm with a narrow linewidth and low threshold[J].Opt Lett, 2020, 45(8): 2263?2266.

    [11] [11] DENG H, CHEN D, ZHAO Q, et al. An efficient low-noise single-frequency 1033 nm Yb3+-doped MOPA phosphate fiber laser system[J]. J Opt, 2017, 19(6): 065502.

    [12] [12] XIAO H, ZHOU P, WANG X L, et al. High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier[J]. Laser Phys Lett,2012, 9(10): 748?753.

    [13] [13] SHARP E, MILLER J, WEBER M. Broad-band infrared emission from Cr3+ in phosphate glasses[J]. Phys Lett A, 1969, 30(3): 142?143.

    [14] [14] LI X, LUO H, WANG Y, et al. Selective self-redox and crystal field modulation for enhanced and tuned broadband emission in chromium-doped aluminate glasses[J]. J Mater Chem C, 2019, 7(18):5401?5409.

    [15] [15] HO U, EILERS H, YEN W, et al.Near infrared emission at 1.35 μm in Cr doped glass[J]. J Lumin, 1994, 60: 119?122.

    [16] [16] SUZUKI T, OHISHI Y. Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass[J]. Appl Phys Lett, 2004, 84(19):3804?3806.

    [17] [17] FANG Z, ZHENG S, PENG W, et al. Ni2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment[J].Opt Express, 2015, 23(22): 28258?28263.

    [18] [18] LV S, CAO M, LI C, et al. in-situ phase transition control in the supercooled state for robust active glass fiber[J]. ACS Appl Mater Inter,2017, 9(24): 20664?20670.

    [19] [19] YU Y, FANG Z, MA C, et al. Mesoscale engineering of photonic glass for tunable luminescence[J]. NPG Asia Mater, 2016, 8(10): e318 (1?9).

    [20] [20] GOLUBEV N, IGNAT'EVA E, MASHINSKY V, et al.Pre-crystallization heat treatment and infrared luminescence enhancement in Ni2+-doped transparent glass-ceramics[J]. J Non-Cryst Solids, 2019, 515: 42?49.

    [21] [21] WANG X, WANG P, ZHAO H, et al. Ultra-broadband near-infrared photoluminescence in Er3+-Ni2+ co-doped transparent glass ceramics containing nano-perovskite KZnF3[J]. Ceram Int, 2020, 46(16):25987?25991.

    [22] [22] LIN C, LIU C, ZHAO Z, et al. Broadband near-IR emission from cubic perovskite KZnF3:Ni2+ nanocrystals embedded glass-ceramics[J]. Opt Lett, 2015, 40(22): 5263?5266.

    [23] [23] KANG S, OUYANG T, YANG D, et al. Enhanced 2 μm mid-infrared laser output from Tm3+-activated glass ceramic microcavities[J]. Laser Photon Rev, 2020, 14(5): 1900396.

    [24] [24] BIERNACKI S W, ROUSSOS G, SCHULZ H J. The luminescence of V2+(d3) and V3+(d2) ions in ZnS and an advanced interpretation of their excitation levels[J]. J Phys C, 1988, 21(33): 5615?5630.

    [25] [25] CAO R, QIU J, YU X, et al. Spectroscopic investigation on BaSO4:(Mn6+, Mn5+) crystal[J]. ECS J Solid State Sc, 2013, 2(11):R237.

    [26] [26] BARTRAM R, FOCKELE M, LOHSE F, et al. Crystal-field model of the Pb0 (2) centre in SrF2[J]. J Phys Condens Matter, 1989, 1(1): 27.

    [27] [27] RADHAKRISHNA S, SETTY R S S. Bismuth centers in alkali halides[J]. Phys Rev B, 1976, 14(3): 969?976.

    [28] [28] MIZOGUCHI H, WOODWARD P M, PARK C-H, et al. Strong near-infrared luminescence in BaSnO3[J]. J Am Chem Soc, 2004,126(31): 9796?9800.

    [29] [29] SHARONOV M Y, BYKOV A, PETRICEVIC V, et al. Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses[J]. Opt Lett, 2008, 33(18): 2131?2133.

    [30] [30] BUFETOV I A, FIRSTOV S V, KHOPIN V F, et al. Luminescence and optical gain in Pb-doped silica-based optical fibers[J]. Opt Express,2009, 17(16): 13487?13492.

    [31] [31] SOKOLOV V O, KHARAKHORDIN A V, LAPTEV A Y, et al. and near-IR luminescence in SiO2 glass[J]. J Non-Cryst Solids, 2016, 452: 176?186.

    [32] [32] DENKER B I, GALAGAN B I, SVERCHKOV S E, et al.SnO-containing oxide glasses emitting in 1.0-2.0 μm spectral range[J].Laser Phys, 2018, 28(6): 065801.

    [33] [33] MENG X G, QIU J R, PENG M Y, et al. Near infrared broadband emission of bismuth-doped aluminophosphate glass[J]. Opt Express,2005, 13(5): 1628?1634.

    [34] [34] PENG M, QIU J, CHEN D, et al. Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses[J]. Opt Lett, 2005, 30(18): 2433?2435.

    [35] [35] ZHANG N, QIU J, DONG G, et al. Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses[J]. J Mater Chem, 2012, 22(7): 3154?3159.

    [36] [36] ZHAO Y, WONDRACZEK L, MERMET A, et al. Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers[J]. Opt Express, 2015, 23(9):12423?12433.

    [37] [37] TAN L, WANG L, PENG M, et al. Unusual anti-thermal degradation Bi NIR lithium tantalum silicate laser glasses[J]. Opt Express, 2016,24(16): 18649?18654.

    [38] [38] WANG L, TAN L, YUE Y, et al. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth-doped germanate laser glass[J]. J Am Ceram Soc, 2016, 99(6): 2071?2076.

    [39] [39] LIU C, ZHUANG Y, HAN J, et al. Multi-band near-infrared emission in low concentration bismuth doped alkaline earth alumino-borogermanate glass[J]. Ceram Int, 2020, 46(10): 15544?15553.

    [40] [40] ZHOU S, JIANG N, ZHU B, et al. Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers[J]. Adv Funct Mater,2008, 18(9): 1407?1413.

    [41] [41] ZHANG Z, CAO J, XUE Y, et al. Tunable luminescence from bismuth-doped phosphate laser glass by engineering photonic glass structure[J]. J Am Ceram Soc, 2018, 101(5): 1916?1922.

    [42] [42] BUFETOV I A, MELKUMOV M A, FIRSTOV S V, et al. Bi-Doped Optical Fibers and Fiber Lasers[J]. IEEE J Sel Top Quantum Electron,2014, 20(5): 111?125.

    [43] [43] DIANOV E M, SEMJONOV S, BUFETOV I A. New generation of optical fibres[J]. Quantum Electron, 2016, 46(1): 1.

    [44] [44] WANG Y, THIPPARAPU N K, RICHARDSON D J, et al.Ultra-broadband bismuth-doped fiber amplifier covering a 115-nm bandwidth in the O and E bands[J]. J Lightwave Technol, 2021, 39(3):795?800.

    [45] [45] PUNPAI P, MORIMOTO S, KHONTHON S, et al. Effect of carbon addition and TeO2 concentration on NIR luminescent characteristics of TeO2-doped soda-lime-silicate glasses[J]. J Non-Cryst Solids, 2008,354(52): 5529?5532.

    [46] [46] PENPRAPA P. NIR luminescence characteristics of Te-doped glasses[D]. 2009.

    [47] [47] KHONTHON S, MORIMOTO S, ARAI Y, et al. Luminescence characteristics of Te-and Bi-doped glasses and glass-ceramics[J]. J Ceram Soc Jpn, 2007, 115: 259?263.

    [48] [48] TAN L, KANG S, PAN Z, et al. Topo-chemical tailoring of tellurium quantum dot precipitation from supercooled polyphosphates for broadband optical amplification[J]. Adv Opt Mater, 2016, 4(10):1624?1634.

    [49] [49] ALYSHEV S V, RYUMKIN K, SHUBIN A V, et al. Fibre laser based on tellurium-doped active fibre[J]. Quantum Electron, 2014, 44(2): 95.

    [50] [50] HUME-ROTHERY W. VIII. The crystal structures of the elements of the B sub-groups and their connexion with the periodic table and atomic structures[J]. Phil Mag, 1930, 9(55): 65?80.

    [51] [51] PAN B C. Geometric structures, electronic properties, and vibrational frequencies of small tellurium clusters[J]. Phys Rev B, 2002, 65(8):085407.

    [52] [52] BJOERGVINSSON M, SCHROBILGEN G J. Homo-and heteropolychalcogenide anions Ch2-, HCh-, Ch2 2-, Ch32-, andCh42-(Ch=selenium and/or tellurium): solution 1H, 77Se, 123Te, and 125Te NMR Study[J]. Inorg Chem, 1991, 30(11): 2540?2547.

    [53] [53] BECK J. Rings, cages and chains-The rich structural chemistry of the polycations of the chalcogens[J]. Coord Chem Rev, 1997, 163: 55?70.

    [54] [54] TAN L, HUANG L, HE C, et al. Tailoring cluster configurations enables tunable broad-band luminescence in glass[J]. Chem Mater,2020, 32(19): 8653?8661.

    [55] [55] TAN L, HUANG L, PENG M. D2h-symmetric tetratellurium clusters in silicate glass as a broadband NIR light source for spectroscopy applications[J]. ACS Appl Mater Inter, 2020, 12(46):51628?51636.

    [56] [56] AUXIER J M, MORRELL M M, WEST B R, et al. Ion-exchanged waveguides in glass doped with PbS quantum dots[J]. Appl Phys Lett,2004, 85(25): 6098?6100.

    [57] [57] HEO J, LIU C. PbS quantum-dots in glass matrix for universal fiber-optic amplifier[J]. J Mater Sci Mater Electron, 2007, 18(S1): 135?139.

    [58] [58] HINES M A, SCHOLES G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv Mater, 2003,15(21): 1844?1849.

    [59] [59] JIANG C. Ultrabroadband Gain characteristics of a quantum-dot-doped fiber amplifier[J]. IEEE J Sel Top Quantum Electron, 2009, 15(1):140?144.

    [60] [60] HUANG X, FANG Z, KANG S, et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission[J]. J Mater Chem C, 2017, 5(31):7927?7934.

    [61] [61] TAN L, MAURO J C, XU S, et al. Unusual thermal response of tellurium near-infrared luminescence in phosphate laser glass[J]. Opt Lett, 2018, 43(19): 4823?4826.

    [62] [62] KIM M A, KWON Y K, LIU C, et al. Lead sulfide quantum dots in glasses containing rare-earth ions[J]. J Non-Cryst Solids, 2014, 383:173?175.

    Tools

    Get Citation

    Copy Citation Text

    TAN Linling, YE Xin, LIN Changgui. Research Progress on Broadband Near-Infrared Luminescence of Glass and Fiber[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1109

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 29, 2021

    Accepted: --

    Published Online: Nov. 13, 2022

    The Author Email: Linling TAN (tanlinling@nbu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20211029

    Topics