Opto-Electronic Engineering, Volume. 50, Issue 2, 220148(2023)

3D laser point cloud clustering method based on image information constraints

Jinze Xia... Haoming Sun, Shenghui Hu and Dongtai Liang* |Show fewer author(s)
Author Affiliations
  • School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, Zhejiang 315000, China
  • show less
    Figures & Tables(16)
    Flow chart of 3D laser point cloud clustering algorithm constrained by image information
    Preprocessing of point cloud data. (a) Before processing; (b) After processing
    Ground segmentation. (a) Groud points; (b) Non-groud points
    Sensor coordinate system
    YOLOv5 network structure diagram
    Schematic diagram of detection frame constraint point cloud
    Cluster centroid selection graph
    Experimental hardware platform and experimental scene
    Align timestamp
    LiDAR and camera calibration. (a) Before calibration; (b) After calibration
    Clustering results of multiple algorithms. (a) DBSCAN; (b) Euclidean Clustering; (c) K-means++; (d) My-method
    Running time of each module of this method
    • Table 1. Calibration results of internal parameters

      View table
      View in Article

      Table 1. Calibration results of internal parameters

      fxfycxcyk1k2p1p2
      K657.58660.12296.12246.35
      D0.238809−0.6438020.001786−0.024125
    • Table 2. Calibration results of external parameters

      View table
      View in Article

      Table 2. Calibration results of external parameters

      x/mmy/mmz/mmRoll/radPitch/radYaw/rad
      T59.9452.76−14.46−1.5400.031−1.581
    • Table 3. Affects of distribution spacing on the algorithm

      View table
      View in Article

      Table 3. Affects of distribution spacing on the algorithm

      Distribution spacing/cmMy-methodK-meansK-means++Euclidean ClusteringDBSCAN
      ωηωηωηωηωη
      20.440.72
      50.460.70
      100.720.88
      150.620.74
      200.540.70
    • Table 4. Performance comparison of multiple algorithms

      View table
      View in Article

      Table 4. Performance comparison of multiple algorithms

      AlgorithmNumber of correctdivisions/numberClusteringaccuracy/%Average timespent/msAverage number of iterations/number
      DBSCAN25870.113.625
      Euclidean Clustering26271.202.517
      K-means21057.071.95112
      K-means++22260.333.37310
      My-method32086.961.1066
    Tools

    Get Citation

    Copy Citation Text

    Jinze Xia, Haoming Sun, Shenghui Hu, Dongtai Liang. 3D laser point cloud clustering method based on image information constraints[J]. Opto-Electronic Engineering, 2023, 50(2): 220148

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jun. 30, 2022

    Accepted: Nov. 28, 2022

    Published Online: Apr. 13, 2023

    The Author Email: Liang Dongtai (liangdongtai@nbu.edu.cn)

    DOI:10.12086/oee.2023.220148

    Topics