Optics and Precision Engineering, Volume. 26, Issue 1, 14(2018)
Comparison of diffuse attenuation coefficient of downwelling irradiance products derived from MODIS-Aqua in the South China Sea
[1] [1] GORDON H R. Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water [J]. Limnology & Oceanography, 1989, 34(8): 1389-1409.
[2] [2] CUI T W, ZHANG J, MA Y, et al.. Diffuse attenuation coefficient Kd(490)retrieval model for nearshore area of Bohai sea [J]. Journal of Remote Sensing, 2009, 13(3): 411-422. (in Chinese)
[3] [3] LEE Z P, DARECKI M, CARDER K L, et al.. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods [J]. Journal of Geophysical Research: Oceans, 2005, 110(C2): C02017.
[4] [4] LEWIS M R, CARR M E, FELDMAN G C, et al.. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean [J]. Nature, 1990, 347(6293): 543-545.
[5] [5] MOREL A, ANTOINE D. Heating rate within the upper ocean in relation to its bio optical state [J]. Journal of Physical Oceanography, 1994, 24(7): 1652-1665.
[6] [6] WU Y S, TANG C C L, SATHYENDRANATH S, et al.. The impact of bio-optical heating on the properties of the upper ocean: a sensitivity study using a 3-D circulation model for the Labrador Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(23-26): 2630-2642.
[7] [7] ZANEVELD J R V, KITCHEN J C, PAK H. The influence of optical water type on the heating rate of a constant depth mixed layer [J]. Journal of Geophysical Research: Atmospheres, 1981, 86(C7): 6426-6428.
[8] [8] PLATT T, SATHYENDRANATH S, CAVERHILL C M, et al.. Ocean primary production and available light: further algorithms for remote sensing [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1988, 35(6): 855-879.
[9] [9] SATHYENDRANATH S, PLATT T, CAVERHILL C M, et al.. Remote sensing of oceanic primary production: computations using a spectral model [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(3): 431-453.
[10] [10] MARRA J, LANGDON C, KNUDSON C A. Primary production, water column changes, and the demise of a Phaeocystis bloom at the Marine Light-Mixed Layers site (59°N, 21°W) in the northeast Atlantic Ocean [J]. Journal of Geophysical Research: Atmospheres, 1995, 100(C4): 6633-6644.
[11] [11] MCCLAIN C R, ARRIGO K, TAI K S, et al.. Observations and simulations of physical and biological processes at ocean weather station P, 1951-1980 [J]. Journal of Geophysical Research: Oceans, 1996, 101(C2): 3697-3713.
[12] [12] Chang G C, DICKEY T D. Coastal ocean optical influences on solar transmission and radiant heating rate [J]. Journal of Geophysical Research: Oceans, 2004, 109(C1): C01020.
[13] [13] JERLOV N G. Marine Optics [M]. New York: Elsevier, 1976: 231.
[14] [14] KIRK J T O. Light and Photosynthesis in Aquatic Ecosystems [M]. New York: Cambridge University Press, 1994.
[15] [15] HUANG CH CH, LI Y M, SUN D Y, et al.. Underwater light field structure and its impact on aquatic ecosystems of Lake Taihu in autumn [J]. Journal of Lake Sciences, 2009, 21(3): 420-428. (in Chinese)
[16] [16] ZHAO J, BARNES B, MELO N, et al.. Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters [J]. Remote Sensing of Environment, 2013, 131: 38-50.
[17] [17] MLIN F, ZIBORDI G, BERTHON J F. Assessment of satellite ocean color products at a coastal site [J]. Remote Sensing of Environment, 2007, 110(2): 192-215.
[18] [18] WANG M H, SON S, SHI W. Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data [J]. Remote Sensing of Environment, 2009, 113(3): 635-644.
[19] [19] MULLER J L. SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm [J]. Medicine Today, 2000, 5(1): 16-29.
[20] [20] MOREL A, MARITORENA S. Bio-optical properties of oceanic waters: a reappraisal [J]. Journal of Geophysical Research: Oceans, 2001, 106(C4): 7163-7180.
[22] [22] TANG J W, DING J, TIAN J W, et al.. Neural network models for the retrieval of chlorophyll, total suspended matter, and gelbstoff concentrations of case-II waters in Yellow Sea and East China Sea [J]. Chinese High Technology Letters, 2005, 15(3): 83-88. (in Chinese)
[23] [23] CAO W X, YANG Y ZH, LIU S, et al.. Spectral absorption coefficient of phytoplankton and its relation to chlorophyll a and remote sensing reflectance in coastal waters of southern China [J]. Progress in Natural Science, 2005, 15(4): 342-350.
[24] [24] PARSONS T R, MAITA Y, LALLI C M.A Manual of Chemical & Biological Methods for Seawater Analysis [M]. Oxford: Pergamon Press, 1984: 1-173.
[25] [25] GORDON H R, WANG M H. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm [J]. Applied Optics, 1994, 33(3): 443-452.
[26] [26] WANG M H. A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure [J]. International Journal of Remote Sensing, 2005, 26(24): 5651-5663.
[27] [27] OREILLY J E, MARITORENA S, SIEGEL D A, et al.. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4 [M]//HOOKER S B, FIRESTONE E R. SeaWiFS Postlaunch Calibration and Validation Analyses. Greenbelt: NASA Goddard Space Flight Center, 2000: 9-23.
[28] [28] BAILEY S W, WERDELL P J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products [J]. Remote Sensing of Environment, 2006, 102(1-2): 12-23.
[29] [29] CUI T W, ZHANG J, GROOM S, et al.. Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters [J]. Remote Sensing of Environment, 2010, 114(10): 2326-2336.
[30] [30] AUSTIN R W, PETZOLD T J. The determination of the diffuse attenuation coefficient of sea water using the coastal zone color scanner [M]//Gower J F R. Oceanography from Space. Boston, MA: Springer, 1981, 13: 239-256.
[31] [31] MOREL A. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters) [J]. Journal of Geophysical Research: Oceans, 1988, 93(C9): 10749-10768.
[32] [32] SMITH R C, BAKER K S. The analysis of ocean optical data [J]. SPIE, 1984, 489: 119-126.
[33] [33] WERDELL P J, BAILEY S W. An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation [J]. Remote Sensing of Environment, 2005, 98(1): 122-140.
[34] [34] MOREL A, HUOT Y, GENTILI B, et al.. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach [J]. Remote Sensing of Environment, 2007, 111(1): 69-88.
[35] [35] LEE Z P, WEIDEMANN A, KINDLE J, et al.. Euphotic zone depth: its derivation and implication to ocean-color remote sensing [J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): 266-281.
Get Citation
Copy Citation Text
ZHAO Wen-jing, CAO Wen-xi, HU shui-bo, WANG Gui-fen. Comparison of diffuse attenuation coefficient of downwelling irradiance products derived from MODIS-Aqua in the South China Sea[J]. Optics and Precision Engineering, 2018, 26(1): 14
Category:
Received: May. 15, 2017
Accepted: --
Published Online: Mar. 14, 2018
The Author Email: Wen-jing ZHAO (wenjing_jingjing@163.com)