Acta Optica Sinica, Volume. 36, Issue 5, 516003(2016)

Effect of Anisotropic Materials on Dirac Point in Two-Dimensional Photonic Crystals Arranged in a Hexagonal Lattice

Wen Fei1、*, Xie Kang1, and Zhang Wei1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(32)

    [1] [1] Novoselov K S, Geim A K, Morozov S V, et al.. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

    [2] [2] Rizza C, Palange E, Ciattoni A. Electromagnetic chirality induced by graphene inclusions in multilayered metamaterials[J]. Photonics Research, 2014, 2(5): 121-125.

    [3] [3] Zhang X, Liu Z. Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals[J]. Physical Review Letters, 2008, 101(26): 264303.

    [4] [4] Mei J, Wu Y, Chan C T, et al.. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals[J]. Physical Review B, 2012, 86(3): 035141.

    [5] [5] Torrent D, Sáanchez-Dehesa J. Acoustic analogue of graphene: Observation of Dirac cones in acoustic surface waves[J]. Physical Review Letters, 2012, 108(17): 174301.

    [6] [6] Torrent D, Mayou D, Sánchez-Dehesa J. Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates[J]. Physical Review B, 2013, 87(11): 115143.

    [7] [7] Huang X Q, Lai Y, Hang Z H, et al.. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials[J]. Nature Materials, 2011,10(8): 582-586.

    [8] [8] Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Physical Review Letters, 2008, 100(1): 013904.

    [9] [9] Raghu S, Haldane F D M. Analogs of quantum-Hall-effect edge states in photonic crystals[J]. Physical Review A, 2008, 78(3): 033834.

    [10] [10] Ochiai T, Onoda M. Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states[J]. Physical Review B, 2009, 80(15): 155103.

    [11] [11] Poo Y, Wu R X, Lin Z, et al.. Experimental realization of self-guiding unidirectional electromagnetic edge states[J]. Physical Review Letters, 2011, 106(9): 093903.

    [12] [12] Rechtsman M C, Zeuner J M, Plotnik Y, et al.. Photonic Floquet topological insulators[J]. Nature, 2013, 496(7444): 196-200.

    [13] [13] Huang Xueqin, Chen Ziting. Dirac-like cones at k=0[J]. Acta Physica Sinica, 2015, 64(18): 184208.

    [14] [14] Sepkhanov R A, Bazaliy Y B. Beenakker C W J. Extremal transmission at the Dirac point of a photonic band structure[J]. Physical Review A, 2007, 75(6): 063813.

    [15] [15] Zandbergen S R, de Dood M J A. Experimental observation of strong edge effects on the pseudo diffusive transport of light in photonic graphene[J]. Physical Review Letters, 2010, 104(4): 043903.

    [16] [16] Bittner S, Dietz B, Miski-Oglu M, et al.. Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene[J]. Physical Review B, 2010, 82(1): 014301.

    [17] [17] Sepkhanov R A, Nilsson J, Beenakker C W J. Proposed method for detection of the pseudospin-1/2 Berry phase in a photonic crystal with a Dirac spectrum[J]. Physical Review B, 2008, 78(4): 045122.

    [18] [18] Sepkhanov R A, Ossipov A, Beenakker C W J. Extinction of coherent backscattering by a disordered photonic crystal with a Dirac spectrum[J]. Europhysics Letters, 2009, 85(1): 014005.

    [19] [19] Weick G, Woollacott C, Barnes W L, et al.. Dirac-like plasmons in honeycomb lattices of metallic nanoparticles[J]. Physical Review Letters, 2013, 110(10): 106801.

    [20] [20] Bock M, Skibina J, Fischer D, et al.. Nanostructured fibers for sub-10 fs optical pulse delivery[J]. Laser & Photonics Reviews, 2013, 7(4): 566-570.

    [21] [21] Konstantaki M, Childs P, Sozzi M, et al.. Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers[J]. Laser & Photonics Reviews, 2013,7(3): 439-443.

    [22] [22] Lu J, Ren H, Guo S, et al.. Ultra-wideband optical diode based on photonic crystal 90° bend and directional coupler[J]. Chinese Optics Letters, 2014, 12(10): 102301.

    [23] [23] Shakoor A, Lo Savio R, Cardile P, et al.. Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths[J]. Laser & Photonics Reviews, 2013, 7(1): 114-121.

    [24] [24] Qureshi K K. Switchable dual-wavelength fiber ring laser featuring twin-core photonic crystal fiber-based filter[J]. Chinese Optics Letters, 2014, 12(2): 020605.

    [25] [25] Lu J, Qiu C, Xu S, et al.. Dirac cones in two-dimensional artificial crystals for classical waves[J]. Physical Review B, 2014, 89(13): 134302.

    [26] [26] Rezaei B, Khalkhali T F, Kalafi M. Tunable out-of-plane band gap of two-dimensional anisotropic photonic crystals infiltrated with liquid crystals[J]. Optics Communications, 2011, 284(3): 813-817.

    [27] [27] Zhang H F, Li H M. Investigating anisotropic photonic band gaps in three-dimensional plasma photonic crystals with simple-cubic lattices doped by the uniaxial material[J]. Optical and Quantum Electronics, 2015, 47(3): 477-490.

    [28] [28] Khalkhali T F, Rezaei B, Ramezani A H. Tuning of full band gap in anisotropic photonic crystal slabs using a liquid crystal[J]. Optics Communications, 2012, 285(24): 5254-5258.

    [29] [29] Pan T, Zhuang F, Li Z Y. Absolute photonic band gaps in a two-dimensional photonic crystal with hollow anisotropic rods[J]. Solid State Communications, 2004, 129(8): 501-506.

    [30] [30] Li G, Ye J, Xu X. Theoretical analysis of the second-harmonic light power in a biaxial crystal[J]. Chinese Optics Letters, 2010, 8(7): 693-696.

    [31] [31] Yang Yibiao, Wang Shuanfeng, Li Xiujie, et al.. Band gap characteristics of two dimensional photonic crystals made of a triangular lattice of dielectic rods[J]. Acta Physica Sinica, 2010, 59(7): 5073-5077.

    [32] [32] Sakoda K. Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices[J]. Physical Review B, 1995, 52(11): 7982-7986.

    Tools

    Get Citation

    Copy Citation Text

    Wen Fei, Xie Kang, Zhang Wei. Effect of Anisotropic Materials on Dirac Point in Two-Dimensional Photonic Crystals Arranged in a Hexagonal Lattice[J]. Acta Optica Sinica, 2016, 36(5): 516003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Nov. 3, 2015

    Accepted: --

    Published Online: May. 3, 2016

    The Author Email: Fei Wen (840524879@qq.com)

    DOI:10.3788/aos201636.0516003

    Topics