Acta Optica Sinica, Volume. 43, Issue 8, 0822007(2023)

Review of Design Methods of Diffractive Optical Element

Yuan Xu1,2,3, Changyu Wang1,2,3, Yongtian Wang1,2,3, and Juan Liu1,2,3、*
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing Engineering Research Center for Mixed Reality and Advanced Display Technology, Beijing 100081, China
  • 3Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education, Beijing 100081, China
  • show less
    References(175)

    [1] Bhattacharya S. Simplified mesh techniques for design of beam-shaping diffractive optical elements[J]. Optik, 119, 321-328(2008).

    [2] Liu S, Liu C Y, Jin G et al. Design of an omnidirectional gaze optical imaging system with ultrahigh resolution[J]. Optical Review, 28, 8-17(2021).

    [3] Yang S P, Kim J B, Seo Y H et al. Rotational offset microlens arrays for highly efficient structured pattern projection[J]. Advanced Optical Materials, 8, 2000395(2020).

    [4] Ho C M B, Hu K, Mishra A et al. Printing of woodpile scaffold using Fresnel lens for tissue engineering[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 507-522(2022).

    [5] Wang H, Wang H T, Zhang W et al. Toward near-perfect diffractive optical elements via nanoscale 3D printing[J]. ACS Nano, 14, 10452-10461(2020).

    [6] Yang G, Qi Y H, Cao J et al. Ultralow voltage imprinting in GeS2-Ga2S3-AgI glasses for visible to middle-infrared diffraction gratings[J]. Ceramics International, 46, 9030-9039(2020).

    [7] Shi Z, Gan L, Xiao T H et al. All-optical modulation of a graphene-cladded silicon photonic crystal cavity[J]. ACS Photonics, 2, 1513-1518(2015).

    [8] Dong J W, Chen X D, Zhu H Y et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 16, 298-302(2017).

    [9] Zheng Y H, Xu M F, Pu M B et al. Designing high-efficiency extended depth-of-focus metalens via topology-shape optimization[J]. Nanophotonics, 11, 2967-2975(2022).

    [10] Liu J, Hu B, Zhou Y[M]. Fundamental concepts of physics optics(2017).

    [11] Shi R, Liu J, Xu J et al. Designing and fabricating diffractive optical elements with a complex profile by interference[J]. Optics Letters, 36, 4053-4055(2011).

    [12] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [13] Yang G Z, Gu B Y. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 30, 410-413(1981).

    [14] Kirkpatrick S, Gelatt C D,, Vecchi M P. Optimization by simulated annealing[J]. Science, 220, 671-680(1983).

    [15] Johnson E G, Abushagur M A G. Microgenetic-algorithm optimization methods applied to dielectric gratings[J]. Journal of the Optical Society of America A, 12, 1152-1160(1995).

    [16] Sinha A, Lee J, Li S et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017).

    [17] Meister M, Winfield R J. Novel approaches to direct search algorithms for the design of diffractive optical elements[J]. Optics Communications, 203, 39-49(2002).

    [18] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [19] Tan Q F, Yan Y B, Jin G F et al. Diffractive optical array element for realizing uniform spot on the plane non-perpendicular to the optical axis with geometrical shape transform[J]. Optics Communications, 175, 13-18(2000).

    [20] Zhou G Y, Chen Y X, Wang Z G et al. Genetic local search algorithm for optimization design of diffractive optical elements[J]. Applied Optics, 38, 4281-4290(1999).

    [21] Tian R, Liu J, Li X et al. Design and fabrication of complicated diffractive optical elements on multiple curved surfaces[J]. Optics Express, 23, 32917-32925(2015).

    [22] Zhu N, Wang Y T, Liu J et al. Optical image encryption based on interference of polarized light[J]. Optics Express, 17, 13418-13424(2009).

    [23] Zhao H Z, Liu J, Xiao R et al. Modulation of optical intensity on curved surfaces and its application to fabricate DOEs with arbitrary profile by interference[J]. Optics Express, 21, 5140-5148(2013).

    [24] Wang X G, Liu J, Han J et al. 3D optical intensity modulation on curved surfaces by optimization method and its application to fabricate arbitrary patterns[J]. Optics Express, 22, 20387-20395(2014).

    [25] Liu P L, Liu J, Li X et al. Design and fabrication of DOEs on multi-freeform surfaces via complex amplitude modulation[J]. Optics Express, 25, 30061-30072(2017).

    [26] Leger J R, Swanson G J, Veldkamp W B. Coherent laser addition using binary phase gratings[J]. Applied Optics, 26, 4391-4399(1987).

    [27] Däschner W, Long P, Stein R et al. Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass[J]. Applied Optics, 36, 4675-4680(1997).

    [28] O'Shea D C, Rockward W S. Gray-scale masks for diffractive-optics fabrication. II. Spatially filtered halftone screens[J]. Applied Optics, 34, 7518-7526(1995).

    [29] Pawlowski E, Kuhlow B. Antireflection-coated diffractive optical elements fabricated by thin-film deposition[J]. Optical Engineering, 33, 3537-3546(1994).

    [30] de Jager P W H, Derksen G, Mertens B et al. Experimental results of the stochastic Coulomb interaction in ion projection lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 17, 3098-3106(1999).

    [31] Borisov M V, Borovikov V A, Gavrikov A A et al. Methods of the development and correction of the quality of holographic images of geometry objects with subwave-size elements[J]. Doklady Physics, 55, 436-440(2010).

    [32] Borisov M, Chelubeev D, Chernik V et al. Sub-wavelength holographic lithography (SWHL)[J]. Proceedings of SPIE, 11324, 1132417(2020).

    [33] Borisov M V, Chelyubeev D A, Chernik V V et al. Phase-shift at subwavelength holographic lithography (SWHL)[J]. Proceedings of SPIE, 8352, 83520P(2012).

    [34] Borisov M V, Chelyubeev D A, Chernik V V et al. Analysis of an effect of perturbations in SWHM and illuminating optical scheme parameters on an aerial image[C], 165-169(2012).

    [35] Borisov M V, Chelyubeev D A, Chernik V V et al. Experimental verification of sub-wavelength holographic lithography physical concept for single exposure fabrication of complex structures on planar and nonplanar surfaces[J]. Proceedings of SPIE, 10446, 104460X(2017).

    [36] Donaldson R R, Patterson S R. Design and construction of a large, vertical axis diamond turning machine[J]. Proceedings of SPIE, 0433, 62-67(1983).

    [37] Fujita T, Nishihara H, Koyama J. Blazed gratings and Fresnel lenses fabricated by electron-beam lithography[J]. Optics Letters, 7, 578-580(1982).

    [38] Bell D C, Lemme M C, Stern L A et al. Precision cutting and patterning of graphene with helium ions[J]. Nanotechnology, 20, 455301(2009).

    [39] Chou S Y, Krauss P R, Renstrom P J. Imprint of sub‐25 nm vias and trenches in polymers[J]. Applied Physics Letters, 67, 3114-3116(1995).

    [40] Plachetka U, Bender M, Fuchs A et al. Wafer scale patterning by soft UV-nanoimprint lithography[J]. Microelectronic Engineering, 73/74, 167-171(2004).

    [41] Tofteberg T, Amédro H, Andreassen E. Injection molding of a diffractive optical element[J]. Polymer Engineering & Science, 48, 2134-2142(2008).

    [42] Gao Y Q, He S A, Luo N N et al. Research on dynamical-gradual greyscale digital mask lithography[J]. Journal of Modern Optics, 58, 573-579(2011).

    [43] Zhang L, Shi Z J, Li Q S. Improved image quality of digital lithography using modified particle swarm optimization algorithm[J]. Proceedings of SPIE, 10256, 102562J(2017).

    [44] Wen S B, Bhaskar A, Zhang H J. Scanning digital lithography providing high speed large area patterning with diffraction limited sub-micron resolution[J]. Journal of Micromechanics and Microengineering, 28, 075011(2018).

    [45] Luo N N, Liu Z H, Zhang Z M. Dynamic fractal digital lithography for the fabrication of microlens array[J]. Proceedings of SPIE, 10840, 1084012(2019).

    [46] Xiong M H, Luo N N, Zhang Z M et al. Factors influencing resolution of optical fiber end face processing in digital lithography[C], 864-869(2021).

    [47] Komlenok M S, Volodkin B O, Knyazev B A et al. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation[J]. Quantum Electronics, 45, 933-936(2015).

    [48] Smith D, Ng S H, Han M L et al. Imaging with diffractive axicons rapidly milled on sapphire by femtosecond laser ablation[J]. Applied Physics B, 127, 154(2021).

    [49] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).

    [50] Hassanzadeh A, Mohammadnezhad M, Mittler S. Multiexposure laser interference lithography[J]. Journal of Nanophotonics, 9, 093067(2015).

    [51] Mahmood R, Ramirez A V, Hillier A C. Creating two-dimensional quasicrystal, supercell, and Moiré lattices with laser interference lithography: implications for photonic bandgap materials[J]. ACS Applied Nano Materials, 4, 8851-8862(2021).

    [52] Poletaev S D, Lyubimov A I. Formation of periodic relief structures in thin chromium films using laser interference lithography[J]. Journal of Optical Technology, 89, 359-364(2022).

    [53] Seo J H, Park J H, Kim S I et al. Nanopatterning by laser interference lithography: applications to optical devices[J]. Journal of Nanoscience and Nanotechnology, 14, 1521-1532(2014).

    [54] Prakapenka V B, Kubo A, Kuznetsov A et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium[J]. High Pressure Research, 28, 225-235(2008).

    [55] Račiukatis G, Stankevicius E, Gecys P et al. Laser processing by using diffractive optical laser beam shaping technique[J]. Journal of Laser Micro Nanoengineering, 6, 37-43(2011).

    [56] Frieden B R. Lossless conversion of a plane laser wave to a plane wave of uniform irradiance[J]. Applied Optics, 4, 1400-1403(1965).

    [57] Deng Z F, Yang Q, Chen F et al. High-performance laser beam homogenizer based on double-sided concave microlens[J]. IEEE Photonics Technology Letters, 26, 2086-2089(2014).

    [58] Veldkamp W B. Laser beam profile shaping with interlaced binary diffraction gratings[J]. Applied Optics, 21, 3209-3212(1982).

    [59] Zhang Y, Zhang J J, Situ G H. Investigation on diffractive optical elements for converting Gaussian beam into square uniform focused spot[J]. Chinese Journal of Lasers, 31, 1183-1187(2004).

    [60] Guo M, Lv G Q, Cai J H et al. Speckle-reduced diffractive optical elements beam shaping with regional padding algorithm[J]. Optical Engineering, 61, 125103(2022).

    [61] Gale M T, Rossi M, Schütz H et al. Continuous-relief diffractive optical elements for two-dimensional array generation[J]. Applied Optics, 32, 2526-2533(1993).

    [62] Li Q K, Chen Q D, Niu L G et al. Sapphire-based dammann gratings for UV beam splitting[J]. IEEE Photonics Journal, 8, 2500208(2016).

    [63] Li Y J, Zhou L, Li Z et al. All-optical framing imaging technology based on diffractive optical elements[J]. Acta Optica Sinica, 41, 0232001(2021).

    [64] Dresel T, Beyerlein M, Schwider J. Design and fabrication of computer-generated beam-shaping holograms[J]. Applied Optics, 35, 4615-4621(1996).

    [65] Liu J S, Caley A J, Taghizadeh M R. Diffractive optical elements for beam shaping of monochromatic spatially incoherent light[J]. Applied Optics, 45, 8440-8447(2006).

    [66] Siemion A, Siemion A, Suszek J et al. THz beam shaping based on paper diffractive optics[J]. IEEE Transactions on Terahertz Science and Technology, 6, 568-575(2016).

    [67] Buske P, Völl A, Eisebitt M et al. Advanced beam shaping for laser materials processing based on diffractive neural networks[J]. Optics Express, 30, 22798-22816(2022).

    [68] Chang J L, Sitzmann V, Dun X et al. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification[J]. Scientific Reports, 8, 1-10(2018).

    [69] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).

    [70] Yan T, Wu J M, Zhou T K et al. Fourier-space diffractive deep neural network[J]. Physical Review Letters, 123, 023901(2019).

    [71] Xie C Q. Research progress on complete fabrication technology of diffractive optical elements[J]. Optics and Precision Engineering, 30, 1815-1827(2022).

    [72] Ma X, Wang J, Chen X B et al. Gradient-based inverse extreme ultraviolet lithography[J]. Applied Optics, 54, 7284-7300(2015).

    [73] Ma L, Dong L S, Fan T A et al. Mitigating the forbidden pitch of extreme ultraviolet lithography using mask optimization based on genetic algorithm[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 21, 043204(2022).

    [74] Zhang H, Li S K, Wang X Z. A rapid simulation method for diffraction spectra of EUV lithography mask based on improved structural decomposition[J]. Acta Optica Sinica, 38, 0105001(2018).

    [75] Tanabe H, Takahashi A. Data augmentation in extreme ultraviolet lithography simulation using convolutional neural network[J]. Journal of Micro/Nanopatterning, Materials, and Metrology, 21, 041602(2022).

    [76] Cheng W, Li S K, Wang X Z. Method for inspection of phase defects in extreme ultraviolet lithography mask[J]. Acta Optica Sinica, 43, 0112001(2023).

    [77] Cheng W, Li S K, Zhang Z N et al. Research on mask defect inspection and compensation techniques in extreme ultraviolet lithography[J]. Laser & Optoelectronics Progress, 59, 0922022(2022).

    [78] Moreno V, Román J F, Salgueiro J R. High efficiency diffractive lenses: deduction of kinoform profile[J]. American Journal of Physics, 65, 556-562(1997).

    [79] Chao W L, Harteneck B D, Liddle J A et al. Soft X-ray microscopy at a spatial resolution better than 15 nm[J]. Nature, 435, 1210-1213(2005).

    [80] Haroutunyan L A. Amplitude-division type X-ray interferometer based on bi-level Fresnel zone plates[J]. Journal of Contemporary Physics (Armenian Academy of Sciences), 50, 292-295(2015).

    [81] Kipp L, Skibowski M, Johnson R L et al. Sharper images by focusing soft X-rays with photon sieves[J]. Nature, 414, 184-188(2001).

    [82] Menon R, Carter D J D, Gil D et al. Zone-Plate-Array Lithography (ZPAL): Simulations for system design[C], 507, 647-652(2000).

    [83] Golub M A, Doskolovich L L, Kazanskiy N L et al. Computer generated diffractive multi-focal lens[J]. Journal of Modern Optics, 39, 1245-1251(1992).

    [84] Zhang A Z. Multifocal diffractive lens design in ophthalmology[J]. Applied Optics, 59, 9807-9823(2020).

    [85] Wang Z X, Pan Y M, Yin S Y et al. Laser processing lens of long focal depth and high resolution[J]. Acta Optica Sinica, 33, 0222004(2013).

    [86] Feng D, Ou P, Feng L S et al. Binary sub-wavelength diffractive lenses with long focal depth and high transverse resolution[J]. Optics Express, 16, 20968-20973(2008).

    [87] Yu X, Xie Z X, Liu J H et al. Optimization design of a diffractive axicon for improving the performance of long focal depth[J]. Optics Communications, 330, 1-5(2014).

    [88] Li C, Zhou C H, Lu Y K et al. Picometer-differential twice-exposed element for three-dimensional measurement with extremely long depth of field[J]. Applied Optics, 59, 5234-5239(2020).

    [89] Xu N, Liu G X, Zhao Y B et al. Ultrahigh-aspect-ratio beam generation with super-resolution spot[J]. Applied Physics Letters, 119, 094101(2021).

    [90] Zhou C H, Yu J J, Wang S Q et al. Three-dimensional optical techniques using Dammann gratings[J]. Proceedings of SPIE, 8556, 85560Z(2012).

    [91] Ke J, Zhang J Y. Generalized Fibonacci photon sieves[J]. Applied Optics, 54, 7278-7283(2015).

    [92] He K, Wang Z H, Huang X et al. Computational multifocal microscopy[J]. Biomedical Optics Express, 9, 6477-6496(2018).

    [93] Merkulov A Y, Belyaev V V, Belyaev A A et al. Diffraction on anisotropic substrates with sinusoidal surface microrelief[J]. Molecular Crystals and Liquid Crystals, 596, 122-127(2014).

    [94] Yu X H, Yao B L, Lei M et al. Polarization-sensitive diffractive optical elements fabricated in BR films with femtosecond laser[J]. Applied Physics B, 115, 365-369(2014).

    [95] Noponen E, Turunen J. Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles[J]. Journal of the Optical Society of America A, 11, 2494-2502(1994).

    [96] Schmitz M, Bräuer R, Bryngdahl O. Gratings in the resonance domain as polarizing beam splitters[J]. Optics Letters, 20, 1830-1831(1995).

    [97] Lu Z W, Liu H, Li F Y. Aspheric surface testing with CGH on curved surface[J]. Optics and Precision Engineering, 12, 555-559(2004).

    [98] Liu H, Lu Z W, Li F Y et al. Design of a novel hologram for full measurement of large and deep convex aspheric surfaces[J]. Optics Express, 15, 3120-3126(2007).

    [99] Dholakia K, Čižmár T. Shaping the future of manipulation[J]. Nature Photonics, 5, 335-342(2011).

    [100] Zhu Y F, Geng T. Generation of high-quality circular Airy beams in laser resonator[J]. Acta Physica Sinica, 69, 014205(2020).

    [101] Niu K, Zhao S D, Liu Y et al. Self-rotating beam in the free space propagation[J]. Optics Express, 30, 5465-5472(2022).

    [102] Dong B Z, Zhang G Q, Yang G Z et al. Design and fabrication of a diffractive phase element for wavelength demultiplexing and spatial focusing simultaneously[J]. Applied Optics, 35, 6859-6864(1996).

    [103] Sun X D, Liu J, Wang Y Q et al. Diffractive optical elements for implementing spatial demultiplexing and spectral synthesizing simultaneously[J]. Optics Communications, 266, 399-403(2006).

    [104] Gün B N, Yüce E. Wavefront shaping assisted design of spectral splitters and solar concentrators[J]. Scientific Reports, 11, 2825(2021).

    [105] Xu W Q, Lin D F, Xu X et al. Simple and universal method in designs of high-efficiency diffractive optical elements for spectrum separation and beam concentration[J]. Chinese Physics B, 26, 074202(2017).

    [106] Stone T, George N. Hybrid diffractive-refractive lenses and achromats[J]. Applied Optics, 27, 2960-2971(1988).

    [107] Sweeney D W, Sommargren G E. Harmonic diffractive lenses[J]. Applied Optics, 34, 2469-2475(1995).

    [108] Swanson G J, Veldkamp W B. Diffractive optical elements for use in infrared systems[J]. Optical Engineering, 28, 605-608(1989).

    [109] Zhu H Y, Ma J, Zhang H J et al. Design of solar blind ultraviolet refractive/diffractive zoom lens used in criminal investigation[J]. Laser Technology, 39, 242-246(2015).

    [110] Zhang B, Cui Q F, Piao M X et al. Design of dual-band infrared zoom lens with multilayer diffractive optical elements[J]. Applied Optics, 58, 2058-2067(2019).

    [111] Behrmann G P, Bowen J P. Influence of temperature on diffractive lens performance[J]. Applied Optics, 32, 2483-2489(1993).

    [112] Piao M X, Cui Q F, Zhang B et al. Optimization method of multilayer diffractive optical elements with consideration of ambient temperature[J]. Applied Optics, 57, 8861-8869(2018).

    [113] Zhou Z P, Chen H, Ji H et al. Design of lightweight long-wave infrared athermalized optical system with hybrid refractive-diffractive[J]. Laser & Optoelectronics Progress, 59, 1022001(2022).

    [114] Sun Q, Liu H B, Wang Z Q et al. An infrared diffractive/refractive optical system beyond normal temperature[J]. Acta Photonica Sinica, 32, 466-469(2003).

    [115] Mao S, Zhao J L. Design and analysis of a hybrid optical system containing a multilayer diffractive optical element with improved diffraction efficiency[J]. Applied Optics, 59, 5888-5895(2020).

    [116] Mao S, Zhao J L. Diffractive optical element optimization under wide incident angle and waveband situations[J]. Optics Communications, 458, 124762(2020).

    [117] Mao S, Zhao J L, He D H. Analytical and comprehensive optimization design for multilayer diffractive optical elements in infrared dual band[J]. Optics Communications, 472, 125831(2020).

    [118] Mao S, Cui Q F, Piao M X et al. High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle[J]. Applied Optics, 55, 3549-3554(2016).

    [119] Tian X H, Xue C X. Athermalization design of small F-number refractive-diffractive telephoto objective lens in infrared dual-band[J]. Acta Optica Sinica, 42, 1422002(2022).

    [120] Low M J, Rohith T M, Kim B et al. Refractive-diffractive hybrid optics array: comparative analysis of simulation and experiments[J]. Journal of Optics, 24, 055401(2022).

    [121] Wolff L B. Polarization vision: a new sensory approach to image understanding[J]. Image and Vision Computing, 15, 81-93(1997).

    [122] Sun P, Liu Q, Wu J H. Sub-wavelength metal polarization gratings array used in polarization imaging[J]. Proceedings of SPIE, 7848, 78482L(2010).

    [123] Noda K, Yamada K, Momosaki R et al. White-light circular-polarization imaging using pairs of polarization gratings and wedge prisms[J]. Applied Optics, 59, 3383-3388(2020).

    [124] Feng B, Chen Y F, Sun D et al. Precision integration of grating-based polarizers onto focal plane arrays of near-infrared photovoltaic detectors for enhanced contrast polarimetric imaging[J]. International Journal of Extreme Manufacturing, 3, 035201(2021).

    [125] Shi X L, Liu J, Xiao J S et al. Design of a compact waveguide eyeglass with high efficiency by joining freeform surfaces and volume holographic gratings[J]. Journal of the Optical Society of America A, 38, A19-A26(2021).

    [126] Shi X L, Liu J, Zhang Z Q et al. Extending eyebox with tunable viewpoints for see-through near-eye display[J]. Optics Express, 29, 11613-11626(2021).

    [127] Zhang S J, Zhang Z Q, Liu J. Adjustable and continuous eyebox replication for a holographic Maxwellian near-eye display[J]. Optics Letters, 47, 445-448(2022).

    [128] Duan X H, Liu J, Shi X L et al. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box[J]. Optics Express, 28, 31316-31329(2020).

    [129] Lü Z L, Liu J, Yang Y. Dual-view and multi-content head-up display using a single picture generation unit and two-layer volume holographic grating[J]. IEEE Photonics Journal, 14, 7035208(2022).

    [130] Lü Z L, Liu J, Xu L F. A multi-plane augmented reality head-up display system based on volume holographic optical elements with large area[J]. IEEE Photonics Journal, 13, 5200108(2021).

    [131] Cheng H H, Tian X. An advanced ray-tracing model for multi-color holographic optical elements[J]. Proceedings of SPIE, 11188, 1118817(2019).

    [132] Yeom J, Son Y, Choi K S. Pre-compensation method for optimizing recording process of holographic optical element lenses with spherical wave reconstruction[J]. Optics Express, 28, 33318-33333(2020).

    [133] Bang K, Jang C, Lee B. Curved holographic optical elements and applications for curved see-through displays[J]. Journal of Information Display, 20, 9-23(2019).

    [134] Lloret T, Navarro-Fuster V, Ramírez M G et al. Aberration-based quality metrics in holographic lenses[J]. Polymers, 12, 993(2020).

    [135] Prijatelj M, Klepp J, Tomita Y et al. Far-off-Bragg reconstruction of volume holographic gratings: a comparison of experiment and theories[J]. Physical Review A, 87, 063810(2013).

    [136] Atencia J, Quintanilla M. Ray aberration for a biaxial holographic imaging system[J]. Optics Communications, 199, 325-344(2001).

    [137] Batomunkuev Y T. Aberrations of a volume holographic optical element obtained by means of a cylindrical object wave and a spherical reference wave[J]. Journal of Optical Technology, 80, 490-494(2013).

    [138] Atencia J, Quintanilla M. Ray tracing for holographic optical element recording with non-spherical waves[J]. Journal of Optics A: Pure and Applied Optics, 3, 387-397(2001).

    [139] Lin W K, Matoba O, Lin B S et al. Astigmatism correction and quality optimization of computer-generated holograms for holographic waveguide displays[J]. Optics Express, 28, 5519-5527(2020).

    [140] Lin W K, Matoba O, Lin B S et al. Astigmatism and deformation correction for a holographic head-mounted display with a wedge-shaped holographic waveguide[J]. Applied Optics, 57, 7094-7101(2018).

    [141] Lee S, Lee B, Cho J et al. Analysis and implementation of hologram lenses for see-through head-mounted display[J]. IEEE Photonics Technology Letters, 29, 82-85(2016).

    [142] Jang C, Mercier O, Bang K et al. Design and fabrication of freeform holographic optical elements[J]. ACM Transactions on Graphics, 39, 1-15(2020).

    [143] Yeom H J, Kim H J, Kim S B et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation[J]. Optics Express, 23, 32025-32034(2015).

    [144] Bruder F K, Fäcke T, Rölle T. The chemistry and physics of Bayfol® HX film holographic photopolymer[J]. Polymers, 9, 472(2017).

    [145] Zhao J B, Nguyen J, Chrysler B D et al. Design of volume holographic lenses for operation at 850 nm in augmented reality eyewear applications[J]. Proceedings of SPIE, 11350, 1135003(2020).

    [146] Hofmann J, Friedel A K, Fiess R et al. Angle-compensated holographic wave front printing for the fabrication of holographic optical elements operating in the infrared[J]. Optical Engineering, 59, 102405(2019).

    [147] Zhao J B, Chrysler B, Kostuk R K. Design of a high-resolution holographic waveguide eye-tracking system operating in near-infrared with conventional optical elements[J]. Optics Express, 29, 24536-24551(2021).

    [148] Kowalski B A, McLeod R R. Design concepts for diffusive holographic photopolymers[J]. Journal of Polymer Science Part B: Polymer Physics, 54, 1021-1035(2016).

    [149] Bruder F K, Frank J, Hansen S et al. Latest Bayfol HX® developments: ultrahigh index modulation and NIR recordable holographic films[J]. Proceedings of SPIE, 11788, 117880B(2021).

    [150] Bruder F K, Frank J, Hansen S et al. Expanding the property profile of Bayfol HX films towards NIR recording and ultra-high index modulation[J]. Proceedings of SPIE, 11765, 117650J(2021).

    [151] Lee W H. Sampled Fourier transform hologram generated by computer[J]. Applied Optics, 9, 639-643(1970).

    [152] Liu K W, Liu T G, Wang Z et al. THz beam shaping based on diffractive transformation for forming patterned simulation lightfields and wavefronts[J]. Infrared Physics & Technology, 124, 104225(2022).

    [153] Wang Y L, Li T, Gao Q K et al. Application of diffractive optical elements for controlling the light beam in ptychography[J]. Optical Engineering, 52, 091720(2013).

    [154] Wang X L, Gong L P, Zhu Z Q et al. Creation of identical multiple focal spots with three-dimensional arbitrary shifting[J]. Optics Express, 25, 17737-17745(2017).

    [155] Gibson G, Barron L, Beck F et al. Optically controlled grippers for manipulating micron-sized particles[J]. New Journal of Physics, 9, 14(2007).

    [156] Jesacher A, Maurer C, Schwaighofer A et al. Near-perfect hologram reconstruction with a spatial light modulator[J]. Optics Express, 16, 2597-2603(2008).

    [157] Neto L G, Cardona P S P, Cirino G A et al. Implementation of Fresnel full complex-amplitude digital holograms[J]. Optical Engineering, 43, 2640-2649(2004).

    [158] Sparvoli M, Mansano R D. Glass Difractive Optical Elements (DOEs) with complex modulation DLC thin film coated[J]. Materials Research, 11, 341-345(2008).

    [159] Stalder M, Ehbets P. Electrically switchable diffractive optical element for image processing[J]. Optics Letters, 19, 1-3(1994).

    [160] Lou Y M, Liu Q K, Wang H et al. Rapid fabrication of an electrically switchable liquid crystal Fresnel zone lens[J]. Applied Optics, 49, 4995-5000(2010).

    [161] Itoh M, Harada K, Kamemaru S I et al. Holographic recording on azo-benzene functionalized polymer film[J]. Japanese Journal of Applied Physics, 43, 4968-4971(2004).

    [162] Shih H F, Li B W. Diffraction grating with dual modes for two-wavelength rewritable optical pickup heads[J]. IEEE Transactions on Magnetics, 43, 900-902(2007).

    [163] Ge S J, Chen P, Ma L L et al. Optical array generator based on blue phase liquid crystal Dammann grating[J]. Optical Materials Express, 6, 1087-1092(2016).

    [164] Wang X Q, Srivastava A K, Fan F et al. Electrically/optically tunable photo-aligned hybrid nematic liquid crystal Dammann grating[J]. Optics Letters, 41, 5668-5671(2016).

    [165] Zheng Z G, Yuan C L, Hu W et al. Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal[J]. Advanced Materials, 29, 1703165(2017).

    [166] Kobashi J, Yoshida H, Ozaki M. Planar optics with patterned chiral liquid crystals[J]. Nature Photonics, 10, 389-392(2016).

    [167] Wang X Q, Wu S B, Yang W Q et al. Light-driven liquid crystal circular Dammann grating fabricated by a micro-patterned liquid crystal polymer phase mask[J]. Polymers, 9, 380(2017).

    [168] Qin J Q, Wang X Q, Yuan C L et al. Light-rewritable geometric phase and reflectance modulations enabled by pattern-aligned photoresponsive liquid crystal superstructures[J]. Liquid Crystals, 47, 255-262(2020).

    [169] Fernández R, Gallego S, Márquez A et al. Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording[J]. Optical Materials, 76, 295-301(2018).

    [170] Lovšin M, Brandl D, Glavan G et al. Reconfigurable surface micropatterns based on the magnetic field-induced shape memory effect in magnetoactive elastomers[J]. Polymers, 13, 4422(2021).

    [171] Gu B Y, Zhang Y, Liu J[M]. Inverse source problem in optics(2016).

    [172] He C, Shen Y J, Forbes A. Towards higher-dimensional structured light[J]. Light: Science & Applications, 11, 1-17(2022).

    [173] Su P, Cai C, Song Y M et al. A hybrid diffractive optical element design algorithm combining particle swarm optimization and a simulated annealing algorithm[J]. Applied Sciences, 10, 5485(2020).

    [174] Korolkov V P, Konoshenko P E, Mikerin S L et al. Development of method for measuring a light energy distribution over foci for mould of diffractive component of bifocal intraocular lens[J]. Proceedings of SPIE, 11873, 118730G(2021).

    [175] Zhao J J, Winetraub Y, Du L et al. Flexible method for generating needle-shaped beams and its application in optical coherence tomography[J]. Optica, 9, 859-867(2022).

    Tools

    Get Citation

    Copy Citation Text

    Yuan Xu, Changyu Wang, Yongtian Wang, Juan Liu. Review of Design Methods of Diffractive Optical Element[J]. Acta Optica Sinica, 2023, 43(8): 0822007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Feb. 15, 2023

    Accepted: Mar. 14, 2023

    Published Online: Apr. 6, 2023

    The Author Email: Liu Juan (juanliu@bit.edu.cn)

    DOI:10.3788/AOS230557

    Topics