Journal of the Chinese Ceramic Society, Volume. 51, Issue 7, 1763(2023)
Preparation and Performance of Hierarchical Scaffold Cathode for Low-Temperature Solid Oxide Fuel Cells
[1] [1] MAHATO N, BANERJEE A, GUPTA A, et al. Progress in material selection for solid oxide fuel cell technology: A review[J]. Prog Mater Sci, 2015, 72: 141-337.
[2] [2] WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334: 935-939.
[4] [4] YANG G, SU C, SHI H, et al. Toward reducing the operation temperature of solid oxide fuel cells: Our past 15 years of efforts in cathode development[J]. Energy Fuels, 2020, 34(12): 15169-15194.
[5] [5] CONNOR P A, YUE X, SAVANIU C D, et al. Tailoring SOFC electrode microstructures for improved performance[J]. Adv Energy Mater, 2018, 8(23): 1800120.
[6] [6] PARK B K, BARNETT S A. Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration[J]. J Mater Chem A, 2020, 8(23): 11626-11631.
[7] [7] DING D, LI X, LAI S Y, et al. Enhancing SOFC cathode performance by surface modification through infiltration[J]. Energy Environ Sci, 2014, 7(2): 552-575.
[8] [8] ZHANG Y, KNIBBE R, SUNARSO J, et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500 ℃[J]. Adv Mater, 2017, 29(48): 1700132.
[10] [10] NICOLLET C, FLURA A, VIBHU V, et al. An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone[J]. Int J Hydrog Energy, 2016, 41(34): 15538-15544.
[12] [12] TORABI A, HANIFI A R, ETSELL T H, et al. Effects of Porous Support Microstructure on Performance of Infiltrated Electrodes in Solid Oxide Fuel Cells[J]. J Electrochem Soc, 2011, 159(2): B201-B210.
[16] [16] ZHI M, LEE S, MILLER N, et al. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode[J]. Energy Environ Sci, 2012, 5(5): 7066-7071.
[18] [18] ALMAR L, MORATA A, TORRELL M, et al. A durable electrode for solid oxide cells: Mesoporous Ce0.8Sm0.2O1.9 scaffolds infiltrated with a Sm0.5Sr0.5CoO3-δ catalyst[J]. Electrochi Acta, 2017, 235: 646-653.
[19] [19] FARANDOS N M, KLEIMINGER L, LI T, et al. Three-dimensional inkjet printed solid oxide electrochemical reactors. I. Yttria-stabilized Zirconia Electrolyte[J]. Electrochi Acta, 2016, 213: 324-331.
[20] [20] TOMOV R I, MITCHEL-WILLIAMS T B, MAHER R, et al. The synergistic effect of cobalt oxide and Gd-CeO2 dual infiltration in LSCF/CGO cathodes[J]. J Mater Chem A, 2018, 6(12): 5071-5081.
[21] [21] MOLERO-SáNCHEZ B, ADDO P K, BUYUKAKSOY A, et al. GDC-infiltrated La0.3Ca0.7Fe0.7Cr0.3O3-δ symmetrical oxygen electrodes for reversible SOFCs[J]. ECS Trans, 2015, 66(2): 185-193.
[22] [22] LEE J S, KIM S. Synthesis and characterization of Ce1-xGdxO2-δ nanorods[J]. J Am Ceram Soc, 2007, 90(2): 661-663.
[23] [23] LIANG J, ZHU Q, XIE Z, et al. Low-temperature sintering behaviors of nanosized Ce0.8Gd0.2O1.9 powder synthesized by co-precipitation combined with supercritical drying[J]. J Power Sources, 2009, 194(2): 640-645.
[25] [25] HYUK K, CALVIN R, MARTA B, et al. Fabrication of highly porous yttria-stabilizad zirconia by acid leaching nickel from a nickel-yttria-stabilized[J]. J Am Ceram Soc, 2002, 85(6): 1473-1476.
[26] [26] DONAZZI A, CORDARO G, BARICCI A, et al. A detailed kinetic model for the reduction of oxygen on LSCF-GDC composite cathodes[J]. Electrochi Acta, 2020, 335: 135620.
[27] [27] SHOLKLAPPER T Z, KUROKAWA H, JACOBSON C P, et al. Nanostructured solid oxide fuel cell electrodes[J]. Nano lett, 2007, 7(7): 2136-2141.
[29] [29] CHEN Y, CHOI Y, YOO S, et al. A highly efficient multi-phase catalyst dramatically enhances the rate of oxygen reduction[J]. Joule, 2018, 2(5): 938-949.
[31] [31] GHAMARINIA M, BABAEI A, ZAMANI C. Electrochemical characterization of La2NiO4-infiltrated La0.6Sr0.4Co0.2Fe0.8O3-δ by analysis of distribution of relaxation times[J]. Electrochi Acta, 2020, 353: 136520.
[33] [33] WAN T H, SACCOCCIO M, CHEN C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools[J]. Electrochi Acta, 2015, 184: 483-499.
[34] [34] LIU J, CIUCCI F. The Gaussian process distribution of relaxation times: A machine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data[J]. Electrochi Acta, 2020, 331: 135316.
[38] [38] BOUKAMP B A, ROLLE A, VANNIER R N, et al. Electrostatic spray deposited Ca3Co4O9+δ and Ca3Co4O9+δ/Ce0.9Gd0.1O1.95 cathodes for SOFC[J]. Electrochim Acta, 2020, 362: 137142.
[39] [39] ZHANG X M, WU W M, ZHAO Z, et al. Insight into the oxygen reduction reaction on the LSM|GDC interface of solid oxide fuel cells through impedance spectroscopy analysis[J]. Catal Sci Technol, 2016, 6(13): 4945-4952.
[40] [40] KIM Y T, JIAO Z, SHIKAZONO N. Evaluation of La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.1Ce0.9O1.95 composite cathode with three dimensional microstructure reconstruction[J]. J Power Sources, 2017, 342: 787-795.
[41] [41] QIANG F, SUN K N, ZHANG N Q, et al. Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy[J]. J Power Sources, 2007, 168(2): 338-345.
Get Citation
Copy Citation Text
WEI Fei, WANG Leying, LUO Linghong, ZHANG Shuangshuang, CHENG Liang, XU Xu, YANG Lin. Preparation and Performance of Hierarchical Scaffold Cathode for Low-Temperature Solid Oxide Fuel Cells[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1763
Category:
Received: Nov. 20, 2022
Accepted: --
Published Online: Oct. 7, 2023
The Author Email: Fei WEI (daisyprince@126.com)
CSTR:32186.14.