Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 889(2023)

Research Progress on Microwave Dielectric Ceramics Based on Cold Sintering Process

CHEN Naichao*... CHENG Jin and WANG Hong |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(56)

    [1] [1] RAVEENDRAN A, SEBASTIAN M T, RAMAN S. Applications of Microwave Materials: A Review[J]. J Electron Mater, 2019, 48(5): 2601-2634.

    [2] [2] SEBASTIAN M T, WANG H, JANTUNEN H. Low temperature co-fired ceramics with ultra-low sintering temperature: A review[J]. Curr Opinion Solid State Mater Sci, 2016, 20(3): 151-170.

    [6] [6] YANG H, ZHANG S, YANG H, et al. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams[J]. J Adv Ceram, 2021, 10(5): 885-932.

    [7] [7] SEBASTIAN M T, JANTUNEN H. Low loss dielectric materials for LTCC applications: a review[J]. Int Mater Rev, 2013, 53(2): 57-90.

    [8] [8] SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties[J]. Int Mater Rev, 2015, 60(7): 392-412.

    [10] [10] GUO J, BAKER A L, GUO H, et al. Cold sintering process: A new era for ceramic packaging and microwave device development[J]. J Am Ceram Soc, 2016, 100(2): 669-677.

    [11] [11] KHRI H, TEIRIKANGAS M, JUUTI J, et al. Dielectric Properties of Lithium Molybdate Ceramic Fabricated at Room Temperature[J]. J Am Ceram Soc, 2014, 97(11): 3378-3379.

    [12] [12] GUO J, GUO H, BAKER A L, et al. Cold sintering: A paradigm shift for processing and integration of ceramics[J]. Angew Chem Int Ed Engl, 2016, 55(38): 11457-11461.

    [13] [13] ANDREWS J, BUTTON D, REANEY I M. Advances in cold sintering : Improving energy consumption and unlocking new potential in component manufacturing[J]. Johnson Matthey Technol Rev, 2020, 64(2): 219-232.

    [14] [14] GUO J, FLOYD R, LOWUM S, et al. Cold sintering: Progress, challenges, and future opportunities[J]. Annual Rev Mater Res, 2019, 49(1): 275-295.

    [15] [15] GUO J, ZHAO X, HERISSON DE BEAUVOIR T, et al. Recent progress in applications of the cold sintering process for ceramic-polymer composites[J]. Adv Funct Mater, 2018, 28(39): 1801724..

    [16] [16] WANG D, LI L, JIANG J, et al. Cold sintering of microwave dielectric ceramics and devices[J]. J Mater Res, 2021, 36(2): 333-349.

    [17] [17] GUO J, LEGUM B, ANASORI B, et al. Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide[J]. Adv Mater, 2018, 30(32): e1801846.

    [18] [18] BOUVILLE F, STUDART A R. Geologically-inspired strong bulk ceramics made with water at room temperature[J]. Nat Commun, 2017, 8: 14655.

    [19] [19] VAKIFAHMETOGLU C, ANGER J F, ATAKAN V, et al. Reactive hydrothermal liquid-phase densification (rHLPD) of ceramics-a study of the BaTiO3[TiO2] composite system[J]. J Am Ceram Soc, 2016, 99(12): 3893-3901.

    [20] [20] KHRI H, TEIRIKANGAS M, JUUTI J, et al. Improvements and modifications to room-temperature fabrication method for dielectric Li2MoO4 ceramics[J]. J Am Ceram Soc, 2015, 98(3): 687-689.

    [21] [21] GUO J, BERBANO S S, GUO H, et al. Cold sintering process of composites: Bridging the processing temperature gap of ceramic and polymer materials[J]. Adv Funct Mater, 2016, 26(39): 7115-7121.

    [22] [22] JI Y, SONG K, LUO X, et al. Microwave dielectric properties of (1-x) Li2MoO4-xMg2SiO4 composite ceramics fabricated by cold sintering process[J]. Front Mater, 2019, 6: 256.

    [23] [23] FAOURI S S, MOSTAED A, DEAN J S, et al. High quality factor cold sintered Li2MoO4-BaFe12O19 composites for microwave applications[J]. Acta Mater, 2019, 166: 202-207.

    [24] [24] N S, RAJAN A, G S. Garnet mineral based composites through cold sintering process: Microstructure and dielectric properties[J]. J Eur Ceram Soc, 2020, 40(2): 371-375.

    [25] [25] WANG D, ZHOU D, ZHANG S, et al. Cold-sintered temperature stable Na0.5Bi0.5MoO4-Li2MoO4 microwave composite ceramics[J]. ACS Sustain Chem Eng, 2018, 6(2): 2438-2444.

    [26] [26] VTJ M, KHRI H, JUUTI J, et al. Li2MoO4-based composite ceramics fabricated from temperature and atmosphere-sensitive MnZn ferrite at room temperature[J]. J Am Ceram Soc, 2017, 100(8): 3626-3635.

    [27] [27] CHEN N, XIAO B, XU X, et al. Cold-sintered Ni0.2Cu0.2Zn0.6Fe2O4-Li2MoO4 ceramic composites with enhanced magnetodielectric properties[J]. J Eur Ceram Soc, 2021, 41(2): 1310-1316.

    [28] [28] LI Y, ZHENG M, ZANG M, et al. Cold sintering co-firing of (Ca,Bi)(Mo,V)O4-PTFE composites in a single step[J]. J Am Ceram Soc, 2022, 105(10): 6262-6270.

    [29] [29] KHRI H, TEIRIKANGAS M, JUUTI J, et al. Room-temperature fabrication of microwave dielectric Li2MoO4-TiO2 composite ceramics[J]. Ceram Int, 2016, 42(9): 11442-11446.

    [30] [30] WANG D, ZHANG S, ZHOU D, et al. Temperature stable cold sintered (Bi0.95Li0.05)(V0.9Mo0.1)O4-Na2Mo2O7 microwave dielectric composites[J]. Materials (Basel), 2019, 12(9):1370.

    [31] [31] JI Y, SONG K, ZHANG S, et al. Cold sintered, temperature-stable CaSnSiO5-K2MoO4 composite microwave ceramics and its prototype microstrip patch antenna[J]. J Eur Ceram Soc, 2021, 41(1): 424-429.

    [32] [32] WANG D, ZHANG S, WANG G, et al. Cold sintered CaTiO3-K2MoO4 microwave dielectric ceramics for integrated microstrip patch antennas[J]. Appl Mater Today, 2020, 18: 100519.

    [33] [33] WANG D, CHEN J, WANG G, et al. Cold sintered LiMgPO4 based composites for low temperature co-fired ceramic (LTCC) applications[J]. J Am Ceram Soc, 2020, 103(11): 6237-6244.

    [34] [34] MA M, SONG K, JI Y, et al. 5G microstrip patch antenna and microwave dielectric properties of cold sintered LiWVO6-K2MoO4 composite ceramics[J]. Ceram Int, 2021, 47(13): 19241-19246.

    [35] [35] WANG D, SIAME B, ZHANG S, et al. Direct integration of cold sintered, temperature-stable Bi2Mo2O9-K2MoO4 ceramics on printed circuit boards for satellite navigation antennas[J]. J Eur Ceram Soc, 2020, 40(12): 4029-4034.

    [36] [36] VAATAJA M, KAHARI H, OHENOJA K, et al. 3D printed dielectric ceramic without a sintering stage[J]. Sci Rep, 2018, 8(1): 15955.

    [37] [37] HAO J, GUO J, MA C, et al. Cold sintering of Na2WO4 ceramics using a Na2WO4-2H2O chemistry[J]. J Eur Ceram Soc, 2021, 41(12): 6029-6034.

    [38] [38] HAO J, GUO J, FU C, et al. The effects of cold sintering parameters on the densification of Na2WO4 ceramics using Na2WO4·2H2O dry powders[J]. J Am Ceram Soc, 2022, 105(8): 5058-5068.

    [39] [39] CHEN N, XIAO B, XU X, et al. Cold-sintered Na2WO4-Ni0.2Cu0.2Zn0.6Fe2O4 ceramics with matched permittivity and permeability for miniaturized antenna[J]. J Am Ceram Soc, 2021, 104(5): 2125-2133.

    [40] [40] HONG W B, LI L, YAN H, et al. Cold sintering and microwave dielectric properties of dense HBO2-II ceramics[J]. J Am Ceram Soc, 2019, 102(10): 5934-5940.

    [41] [41] HONG W B, LI L, YAN H, et al. Room-temperature-densified H3BO3 microwave dielectric ceramics with ultra-low permittivity and ultra-high Qf value[J]. J Materiomics, 2020, 6(2): 233-239.

    [42] [42] DING X, GU Y, LI Q, et al. Room temperature densified H3BO3 microwave dielectric ceramics with ultra-low permittivity and high quality factor for dielectric substrate applications[J]. Ceram Int, 2020, 46(9): 13225-13232.

    [43] [43] LIU B, LI L, SONG K X, et al. Enhancement of densification and microwave dielectric properties in LiF ceramics via a cold sintering and post-annealing process[J]. J Eur Ceram Soc, 2021, 41(2): 1726-1729.

    [44] [44] LIU B, SHA K, JIA Y Q, et al. High quality factor cold sintered LiF ceramics for microstrip patch antenna applications[J]. J Eur Ceram Soc, 2021, 41(9): 4835-4840.

    [45] [45] ZHOU M F, ZHENG Y X, SHA K, et al. A novel strategy to assemble core-shell-structured LiF-CaTiO3 microwave dielectric ceramics via cold sintering and post-annealing treatment[J]. J Mater Sci: Mater Electron, 2021, 32(24): 28447-28453.

    [46] [46] JIN D H, LIU B, SONG K X, et al. Boosting densification and microwave dielectric properties in cold sintered BaF2 ceramics for 5.8 GHz WLAN applications[J]. J Alloys Compd, 2021, 886:161141.

    [47] [47] INDUJA I J, SEBASTIAN M T. Microwave dielectric properties of mineral sillimanite obtained by conventional and cold sintering process[J]. J Eur Ceram Soc, 2017, 37(5): 2143-2147.

    [48] [48] LI L, HONG W B, YANG S, et al. Effects of water content during cold sintering process of NaCl ceramics[J]. J Alloys Compd, 2019, 787: 352-357.

    [49] [49] HONG W B, LI L, CAO M, et al. Plastic deformation and effects of water in room-temperature cold sintering of NaCl microwave dielectric ceramics[J]. J Am Ceram Soc, 2018, 101(9): 4038-4043.

    [50] [50] MADHURI R, NARAYANA IYER S, GANESANPOTTI S. Insights into the microstructure and dielectric properties of cold sintered NaCa2Mg2V3O12 based composites[J]. Front Mater, 2021, 8:665033.

    [51] [51] INDUJA I J, SEBASTIAN M T. Microwave dielectric properties of cold sintered Al2O3-NaCl composite[J]. Mater Lett, 2018, 211: 55-57.

    [52] [52] SANTHA N, RAKHI M, SUBODH G. Fabrication of high quality factor cold sintered MgTiO3-NaCl microwave ceramic composites[J]. Mater Chem Phys, 2020, 255:123636.

    [53] [53] LIU Y, LIU P, HU C. Low-temperature preparation and microwave dielectric properties of cold sintered Li2Mg3TiO6 nanocrystalline ceramics[J]. Ceram Int, 2018, 44(17): 21047-21052.

    [54] [54] VILESH V L, SANTHA N, SUBODH G. Influence of Li2MoO4 and polytetrafluoroethylene addition on the cold sintering process and dielectric properties of BaBiLiTeO6 ceramics[J]. Ceram Int, 2021, 47(21): 30756-30763.

    [55] [55] SONG J, ZHU G, XU H, et al. Preparation and properties of high-density Bi2O3 ceramics by cold sintering[J]. Ceram Int, 2020, 46(9): 13848-13853.

    [56] [56] ZHAO E, HAO J, XUE X, et al. Rutile TiO2 microwave dielectric ceramics prepared via cold sintering assisted two step sintering[J]. J Eur Ceram Soc, 2021, 41(6): 3459-3665.

    [57] [57] ZHOU D, PANG L X, WANG D W, et al. Novel water-assisting low firing MoO3 microwave dielectric ceramics[J]. J Eur Ceram Soc, 2019, 39(7): 2374-2378.

    [58] [58] BAKER A, GUO H, GUO J, et al. Utilizing the cold sintering process for flexible-printable electroceramic device fabrication[J]. J Am Ceram Soc, 2016, 99(10): 3202-3204.

    [59] [59] KHRI H, RAMACHANDRAN P, JUUTI J, et al. Room-temperature- densified Li2MoO4 ceramic patch antenna and the effect of humidity[J]. Int J Appl Ceram Technol, 2017, 14(1): 50-55.

    [60] [60] GUO J, PFEIFFENBERGER N, BEESE A, et al. Cold sintering Na2Mo2O7 ceramic with poly(ether imide) (PEI) polymer to realize high-performance composites and integrated multilayer circuits[J]. ACS Appl Nano Mater, 2018, 1(8): 3837-3844.

    CLP Journals

    [1] OUYANG Ruifeng, SHI Wei, CHEN Yunxia, SU Xiaoli, ZENG Tao, LI Lei. Review on Cold Sintering Process Technique in Preparation of Ceramic Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2108

    Tools

    Get Citation

    Copy Citation Text

    CHEN Naichao, CHENG Jin, WANG Hong. Research Progress on Microwave Dielectric Ceramics Based on Cold Sintering Process[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 889

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Aug. 25, 2022

    Accepted: --

    Published Online: Apr. 15, 2023

    The Author Email: Naichao CHEN (12131001@mail.sustech.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics