Journal of Inorganic Materials, Volume. 36, Issue 4, 399(2021)
[1] P GEORGEE, D RAABE, O RITCHIER. High-entropy alloys. Nature Reviews Materials, 4, 515-534(2019).
[2] B MIRACLED, N SENKOVO. A critical review of high entropy alloys and related concepts. Acta Mater., 122, 448-511(2017).
[3] W YEH J, K CHEN S, J LIN S et al. Nanostructured high-entropy alloying with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 6, 299-303(2004).
[5] Z LI, G PRADEEPK, Y DENG et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 534, 306-307(2016).
[6] M YOUSSEF K, J ZADDACH A, C NIU et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 3, 95-99(2014).
[7] Y ZHANG, T ZUO T, Z TANG et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., 61, 1-93(2014).
[8] Z SHI Y, B YANG, P LIAW. Corrosion-resistant high-entropy alloys: a review. Metals-Basel, 7, 43-1(2017).
[9] N SENKOV O, B WILKS G, B Miracle D et al. Refractory high-entropy alloys. Intermetallics, 18, 1758-1765(2010).
[10] Y HSU C, C JUAN C, R WANG W et al. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high- entropy alloys. Materials Science and Engineering: A, 528, 3581-3588(2011).
[11] K OIKAWA, W ITO, Y IMANO et al. Effect of magnetic field on martensitic transition of Ni46Mn41In13 heusler alloy. Appl. Phys. Lett., 88, 122507-1(2006).
[13] D BÉRARDAN, S FRANGER, D DRAGOE et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi-Rapid Research Letters, 10, 328-333(2016).
[14] S SHAFEIE, S GUO, Q HU et al. High-entropy alloys as high- temperature thermoelectric materials. J. Appl. Phys., 118, 184905-1(2015).
[15] C WEI P, N LIAO C, J WU H et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Adv. Mater., 32, 1906457-1(2020).
[16] M H TSAI. Three strategies for the design of advanced high- entropy alloys. Entropy, 18, 252-1(2016).
[17] H TSAI M, W YEH J. High-entropy alloys: a critical review. Materials Research Letters, 2, 107-123(2014).
[18] E BELL L. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461(2008).
[21] H ZHANG, G LEE, F FONSECA A et al. Isotope effect on the thermal conductivity of graphene. Journal of Nanomaterials, 2010, 537657-1(2010).
[22] R LIU, L XI, H LIU et al. Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem. Commun., 48, 3818-3820(2012).
[24] L XI, B ZHANGY, Y SHIX et al. Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3 (X=Se, S) from first principles. Phys. Rev. B, 86, 155201-155215(2012).
[26] R LIU, H CHEN, K ZHAO et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Adv. Mater., 29, 1702712-7-7(2017).
[27] L HU, Y ZHANG, H WU et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Adv. Energy Mater., 8, 1802116-1-14(2018).
[29] G TAN, S HAO, R HANUS et al. High thermoelectric performance in SnTe-AgSbTe2 alloys from lattice softening, giant phonon-vacancy scattering, and valence band convergence. ACS. Energy Lett., 3, 705-712(2018).
[30] W HARRISON. Elementary Electronic Structure. London: World Scientific Publishing Company(2004).
Get Citation
Copy Citation Text
Jianfeng CAI, Hongxiang WANG, Guoqiang LIU, Jun JIANG.
Category: RESEARCH PAPER
Received: Nov. 18, 2020
Accepted: --
Published Online: Nov. 24, 2021
The Author Email: JIANG Jun (jjun@nimte.ac.cn)