[1] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).
[2] R. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, W. L. Zhang. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett., 105, 171101(2014).
[3] B. Reinhard, O. Paul, M. Rahm. Metamaterial-based photonic devices for terahertz technology. IEEE J. Sel. Top. Quantum Electron., 19, 8500912(2013).
[4] M. C. Schaafsma, A. Bhattacharya, J. G. Rivas. Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles. ACS Photon., 3, 1596-1603(2016).
[5] K. Zhong, W. Shi, D. G. P. Xu, X. Liu, Y. Y. Wang, J. L. Mei, C. Yan, S. J. Fu, J. Q. Yao. Optically pumped terahertz sources. Sci. China Technol. Sci., 60, 1801-1818(2017).
[6] Y. Chen, J. Gao, X. D. Yang. Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking. Nano Lett., 18, 520-527(2018).
[7] Y. Chen, C. Zhao, Y. Z. Zhang, C. W. Qiu. Integrated molar chiral sensing based on high-Q metasurface. Nano Lett., 20, 8696-8703(2020).
[8] Y. Chen, W. Du, Q. Zhang, O. Avalos-Ovando, J. Wu, Q. H. Xu, N. Liu, H. Okamoto, A. O. Govorov, Q. H. Xiong, C. W. Qiu. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys., 4, 113-124(2022).
[9] C. Jansen, I. Al-Naib, N. Born, M. Koch. Terahertz metasurfaces with high Q-factors. Appl. Phys. Lett., 98, 051109(2011).
[10] A. Ferraro, D. C. Zografopoulos, R. Caputo, R. Beccherelli. Guided-mode resonant narrowband terahertz filtering by periodic metallic stripe and patch arrays on cyclo-olefin substrates. Sci. Rep., 8, 17272(2018).
[11] R. Singh, I. Al-Naib, M. Koch, W. L. Zhang. Sharp Fano resonances in THz metamaterials. Opt. Express, 19, 6312-6319(2011).
[12] V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett., 99, 147401(2007).
[13] J. V. Neumann, E. P. Wigner. Über merkwürdige diskrete Eigenwerte(1993).
[14] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).
[15] F. Wintgen. Interfering resonances and bound states in the continuum. Phys. Rev. A, 32, 3231-3242(1985).
[16] C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljacic. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).
[17] M. I. Molina, A. E. Miroshnichenko, Y. S. Kivshar. Surface bound states in the continuum. Phys. Rev. Lett., 108, 070401(2012).
[18] K. Koshelev, S. Lepeshov, M. K. Liu, A. Bogdanov, Y. Kivshar. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).
[19] R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, G. Strasser. Measurement of bound states in the continuum by a detector embedded in a photonic crystal. Light Sci. Appl., 5, e16147(2016).
[20] K. B. Fan, I. V. Shadrivov, W. J. Padilla. Dynamic bound states in the continuum. Optica, 6, 169-173(2019).
[21] S. Han, L. Q. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. C. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, R. Singh. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater., 31, 1901921(2019).
[22] Y. Yang, C. Peng, Y. Liang, Z. B. Li, S. Noda. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett., 113, 037401(2014).
[23] H. N. Xu, Y. C. Shi. Silicon-waveguide-integrated high-quality metagrating supporting bound state in the continuum. Laser Photon. Rev., 14, 1900430(2020).
[24] S. Romano, M. Mangini, E. Penzo, S. Cabrini, A. C. De Luca, I. Rendina, V. Mocella, G. L. Zito. Ultrasensitive surface refractive index imaging based on quasi-bound states in the continuum. ACS Nano, 14, 15417-15427(2020).
[25] M. F. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W. K. Koh, D. R. Abujetas, J. A. Sanchez-Gil, R. Paniagua-Dominguez, H. V. Demir, A. I. Kuznetsov. Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum. Nano Lett., 20, 6005-6011(2020).
[26] B. Wang, W. Z. Liu, M. X. Zhao, J. J. Wang, Y. W. Zhang, A. Chen, F. Guan, X. H. Liu, L. Shi, J. Zi. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics, 14, 623-628(2020).
[27] M. K. Liu, D. Y. Choi. Extreme Huygens’ metasurfaces based on quasi-bound states in the continuum. Nano Lett., 18, 8062-8069(2018).
[28] M. Lawrence, D. R. Barton, J. Dixon, J. H. Song, J. van de Groep, M. L. Brongersma, J. A. Dionne. High quality factor phase gradient metasurfaces. Nat. Nanotechnol., 15, 956-961(2020).
[29] J. Gomis-Bresco, D. Artigas, L. Torner. Anisotropy-induced photonic bound states in the continuum. Nat. Photonics, 11, 232-293(2017).
[30] A. C. Overvig, S. Shrestha, N. F. Yu. Dimerized high contrast gratings. Nanophotonics, 7, 1157-1168(2018).
[31] S. S. Wang, R. Magnusson. Theory and applications of guided-mode resonance filters. Appl. Opt., 32, 2606-2613(1993).
[32] F. Wu, J. J. Wu, Z. W. Guo, H. T. Jiang, Y. Sun, Y. H. Li, J. Ren, H. Chen. Giant enhancement of the Goos-Hanchen shift assisted by quasibound states in the continuum. Phys. Rev. Appl., 12, 014028(2019).
[33] G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky. Terahertz waveguides. J. Opt. Soc. Am. B, 17, 851-863(2000).
[34] Y. Liang, K. Koshelev, F. C. Zhang, H. Lin, S. R. Lin, J. Y. Wu, B. H. Jia, Y. Kivshar. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett., 20, 6351-6356(2020).
[35] V. Kravtsov, E. Khestanova, F. A. Benimetskiy, T. Ivanova, A. K. Samusev, I. S. Sinev, D. Pidgayko, A. M. Mozharov, I. S. Mukhin, M. S. Lozhkin, Y. V. Kapitonov, A. S. Brichkin, V. D. Kulakovskii, I. A. Shelykh, A. I. Tartakovskii, P. M. Walker, M. S. Skolnick, D. N. Krizhanovskii, I. V. Iorsh. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl., 9, 56(2020).
[36] E. N. Bulgakov, A. F. Sadreev. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys. Rev. A, 90, 053801(2014).
[37] Y. M. Yang, I. I. Kravchenko, D. P. Briggs, J. Valentine. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).
[38] A. N. Poddubny, M. V. Rybin, M. F. Limonov, Y. S. Kivshar. Fano interference governs wave transport in disordered systems. Nat. Commun., 3, 914(2012).
[39] Y. F. Wang, J. M. Song, L. Dong, M. Lu. Optical bound states in slotted high-contrast gratings. J. Opt. Soc. Am. B, 33, 2472-2479(2016).
[40] L. F. Ni, Z. X. Wang, C. Peng, Z. B. Li. Tunable optical bound states in the continuum beyond in-plane symmetry protection. Phys. Rev. B, 94, 245148(2016).
[41] Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, A. V. Lavrinenko. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photon., 4, 723-727(2017).
[42] F. Monticone, A. Alu. Bound states within the radiation continuum in diffraction gratings and the role of leaky modes. New J. Phys., 19, 093011(2017).
[43] D. R. Abujetas, A. Barreda, F. Moreno, A. Litman, J. M. Geffrin, J. A. Sanchez-Gil. High-Q transparency band in all-dielectric metasurfaces induced by a quasi bound state in the continuum. Laser Photon. Rev., 15, 2000263(2021).
[44] L. L. Doskolovich, E. A. Bezus, D. A. Bykov, N. V. Golovastikov, V. A. Soifer. Resonant properties of composite structures consisting of several resonant diffraction gratings. Opt. Express, 27, 25814-25828(2019).
[45] L. Q. Cong, R. Singh. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater., 7, 1900383(2019).
[46] Z. Y. Li, Y. F. Ma, R. Huang, R. J. Singh, J. Q. Gu, Z. Tian, J. G. Han, W. L. Zhang. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt. Express, 19, 8912-8919(2011).
[47] S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).
[48] W. Suh, Z. Wang, S. H. Fan. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron., 40, 1511-1518(2004).
[49] A. H. Safavi-Naeini, T. P. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter. Electromagnetically induced transparency and slow light with optomechanics. Nature, 472, 69-73(2011).
[50] R. R. Boye, R. K. Kostuk. Investigation of the effect of finite grating size on the performance of guided-mode resonance filters. Appl. Opt., 39, 3649-3653(2000).
[51] Z. Y. Zhao, X. B. Zheng, W. Peng, H. W. Zhao, J. B. Zhang, Z. J. Luo, W. Z. Shi. Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators. Opt. Mater. Express, 7, 1950-1961(2017).