Laser & Optoelectronics Progress, Volume. 54, Issue 4, 41405(2017)

Effect of Laser Shock Peening on Residual Stress and Microstructure of TC17 Titanium Alloy

Sun Hao1、*, Zhu Ying1, Guo Wei1, Peng Peng1, and Huang Shuai2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(24)

    [1] [1] Wang Xuede, Yang Lei, Zhou Xin, et al. Residual stress and microstructure of laser shock peened layer of titanium alloy[J]. Materials for Mechanical Engineering, 2012, 36(4): 77-83.

    [2] [2] Li Chonghe, Zhu Ming, Wang Ning, et al. Application of titanium alloy in airplane[J]. Chinese Journal of Rare Metals, 2009, 33(1): 84-91.

    [3] [3] Li H M, Liu Y G, Li M Q, et al. The gradient crystalline structure and microhardness in the treated layer of TC17 via high energy shot peening[J]. Applied Surface Science, 2015, 357(A): 197-203.

    [4] [4] Zhou L C, Li Y H, He W F, et al. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering: A, 2013, 578: 181-186.

    [5] [5] Cao X W, Xu H Y, Zou S K, et al. Investigation of surface integrity on TC17 titanium alloy treated by square-spot laser shock peening[J]. Chinese Journal of Aeronautics, 2012, 25(4): 650-656.

    [6] [6] Fairand B P, Clauer A H. Laser generation of high-amplitude stress waves in materials[J]. Journal of Applied Physics, 1979, 50(3): 1497-1502.

    [7] [7] Nie Xiangfan, He Weifeng, Zang Shunlai, et al. Effects on structure and mechanical properties of TC11 titanium alloy by laser shock peening[J]. Journal of Aerospace Power, 2014, 29(2): 321-327.

    [8] [8] Hatamleh O, Lyons J, Forman R. Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints[J]. International Journal of Fatigue, 2007, 29(3): 421-434.

    [9] [9] Breuer D. Laser peening-Advanced residual stress technology[J]. Industrial Heating, 2007, 74(1): 48-50.

    [10] [10] Ricbard D T, David F L. Preventing fatigue failures with laser peening[J]. AMPTIAC Quarterly, 2003, 7(2): 3-7.

    [11] [11] Bartsch T M. High cycle fatigue (HCF) science and technology program 2002 annual report[R]. Dayton: Universal Technology Corporation, 2003.

    [12] [12] Zhang Hong, Yu Chengye, Lu Boliang. The research of laser shock processing to improve the mechanical properties of aeronautical materials[J]. Laser Journal, 1996, 17(5): 221-224.

    [13] [13] Zou Hongcheng, Dai Shujuan, Yang Xiao, et al. Study on improvement of fatigue life of aluminum alloy by small energy laser shock processing[J]. Applied Laser, 1995, 15(6): 250-252.

    [15] [15] Zhang Yongkang, Zhou Lichun, Ren Xudong, et al. Experiment and finite element analysis on residual stress field in laser shock processing TC4 titanium alloy[J]. Journal of Jiangsu University, 2009, 30(1): 12-13.

    [16] [16] Cao Yupeng, Xu Ying, Feng Aixin, et al. Experimental study of residual stress formation mechanism of 7050 aluminum alloy sheet by laser shock processing[J]. Chinese J Lasers, 2016, 43(7): 0702008.

    [17] [17] Wang Changyu, Luo Kaiyu, Lu Jinzhong. Effect of advancing direction on residual stress fields of AM50 Mg alloy specimens treated by double-sided laser shock peening[J]. Chinese J Lasers, 2016, 43(3): 0303002.

    [18] [18] Liu Bo, Luo Kaiyu, Wu Liujun, et al. Effect of laser shock processing on property and microstructure of AM50 magnesium alloy[J]. Acta Optica Sinica, 2016, 36(8): 0814003.

    [19] [19] Lou S, Li Y, Zhou L, et al. Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing[J]. Materials & Design, 2016, 104: 320-326.

    [20] [20] Li Wei. Study on principle and key technologies of laser shock processing used in steel blade[D]. Xi′an: Air Force Engineering University, 2010: 19-24.

    [21] [21] Manson S S. Fatigue damage of metals[M]. Lu Suo, Transl. Beijing: National Defence Industry Press, 1976: 314-333.

    [22] [22] Meyers M A, Gregori F, Kad B K, et al. Laser-induced shock compression of monocrystalline copper: Characterization and analysis[J]. Acta Materialia, 2003, 51(5): 1211-1228.

    [23] [23] Garcia-Mateo C, Caballero F G. Ultra-high-strength bainitic steels[J]. ISIJ International, 2005, 45(11): 1736-1740.

    [24] [24] Ling Chao, Li Guobin, Meng Xianling. An investigation on the relation between the fatigue crack propagation threshold and grain size-the application of the dislocation theory[J]. Journal of Hebei Institute of Technology, 1992, 21(3): 68-70.

    Tools

    Get Citation

    Copy Citation Text

    Sun Hao, Zhu Ying, Guo Wei, Peng Peng, Huang Shuai. Effect of Laser Shock Peening on Residual Stress and Microstructure of TC17 Titanium Alloy[J]. Laser & Optoelectronics Progress, 2017, 54(4): 41405

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Nov. 16, 2016

    Accepted: --

    Published Online: Apr. 19, 2017

    The Author Email: Hao Sun (sunhaoserenade@163.com)

    DOI:10.3788/lop54.041405

    Topics