Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 1065(2024)
Research Progress on Long Afterglow Ceramic Materials
[1] [1] LI Y, GECEVICIUS M, QIU J R. Long persistent phosphors: From fundamentals to applications[J]. Chem Soc Rev, 2016, 45(8): 2090-2136.
[2] [2] LASTUSAARI M, LAAMANEN T, MALKAM?KI M, et al. The Bologna Stone: History’s first persistent luminescent material[J]. Ejm, 2012, 24(5): 885-890.
[3] [3] XU J, TANABE S. Persistent luminescence instead of phosphorescence: History, mechanism, and perspective[J]. J Lumin, 2019, 205: 581-620.
[4] [4] HOOGENSTRAATEN W, KLASENS H A. Some properties of zinc sulfide activated with copper and cobalt[J]. J Electrochem Soc, 1953, 100(8): 366.
[5] [5] WANG Yuhua, FENG Peng, DING Songsong, et al. Mater Rep, 2023, 37(3): 5-17.
[6] [6] YAMAMOTO H, MATSUZAWA T. Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+[J]. J Lumin, 1997, 72/74: 287-289.
[7] [7] H?LS? J, JUNGNER H, LASTUSAARI M, et al. Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4:Eu2+[J]. J Alloys Compd, 2001, 323/324: 326-330.
[8] [8] MATSUZAWA T, AOKI Y, TAKEUCHI N, et al. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+[J]. J Electrochem Soc, 1996, 143(8): 2670-2673.
[9] [9] XIAO Z G, XIAO Z Q. Long afterglow silicate luminescent material and its manufacturing method: US 6093346[P]. 2000-07-25.
[10] [10] LIN Y H, TANG Z L, ZHANG Z T, et al. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor[J]. J Mater Sci Lett, 2001, 20(16): 1505-1506.
[11] [11] ZHAO Yongwang, WANG Jingfu, BAI Zhitao, et al. Chin Rare Earths, 2015, 36(6): 57-61.
[12] [12] ZHAO Yongwang, ZHANG Chao, ZHAO Wenguang, et al. Chin Rare Earths, 2017, 38(2): 87-92.
[13] [13] BESSIèRE A, SHARMA S K, BASAVARAJU N, et al. Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate[J]. Chem Mater, 2014, 26(3): 1365-1373.
[14] [14] VIANA B, SHARMA S K, GOURIER D, et al. Long term in vivo imaging with Cr3+ doped spinel nanoparticles exhibiting persistent luminescence[J]. J Lumin, 2016, 170: 879-887.
[15] [15] ZHOU X F, GENG W Y, GUO H J, et al. K4CaGe3O9:Mn2+, Yb3+: A novel orange-emitting long persistent luminescent phosphor with a special nanostructure[J]. J Mater Chem C, 2018, 6(27): 7353-7360.
[16] [16] YE Q F, WANG Y H, GUO H J, et al. Designing a novel red to near-infrared persistent phosphor CaMgGe2O6:Mn2+, Sm3+ based on a vacuum referred binding energy diagram[J]. Dalton Trans, 2019, 48(29): 11052-11062.
[17] [17] LECOINTRE A, BESSIèRE A, BOS A J J, et al. Designing a red persistent luminescence phosphor: The example of YPO4:Pr3+, Ln3+ (Ln=Nd, Er, Ho, Dy)[J]. J Phys Chem C, 2011, 115(10): 4217-4227.
[18] [18] GUO H J, CHEN W B, ZENG W, et al. Structure and luminescence properties of a novel yellow super long-lasting phosphate phosphor Ca6BaP4O17:Eu2+, Ho3+[J]. J Mater Chem C, 2015, 3(22): 5844-5850.
[19] [19] LEI B F, LI B, ZHANG H R, et al. Synthesis and luminescence properties of cube-structured CaSnO3/RE3+ (RE=Pr, Tb) long-lasting phosphors[J]. J Electrochem Soc, 2007, 154(7): H623.
[20] [20] ZHAO H W, SHI M M, ZOU J, et al. Synthesis and luminescent properties of a new cyan afterglow phosphor CaSnO3:Gd3+[J]. Ceram Int, 2017, 43(2): 2750-2755.
[21] [21] MURAZAKI Y, ARAI K, ICHINOMIYA K. New red long persistence phosphor[J]. Journal Illuminating Engineering Institute Japan, 1999, 83(7): 445-446.
[22] [22] SHI Z D, ZHANG L, MA Y L, et al. Kinetics and mechanism of the sulfurization behavior of silver conductive material in automobile industry[J]. Rare Met, 2022, 41(1): 37-44.
[23] [23] ZHANG X Y, ZHANG L, ZHOU T Y, et al. High specific surface area inherited from sea-urchin-like AACH clusters prepared by a novel spray precipitation[J]. Rare Met, 2022, 41(11): 3684-3693.
[24] [24] H?PPE H A, LUTZ H, MORYS P, et al. Luminescence in Eu2+-doped Ba2Si5N8: Fluorescence, thermoluminescence, and upconversion[J]. J Phys Chem Solids, 2000, 61(12): 2001-2006.
[25] [25] VAN DEN EECKHOUT K, SMET P F, POELMAN D. Persistent luminescence in rare-earth codoped Ca2Si5N8:Eu2+[J]. J Lumin, 2009, 129(10): 1140-1143.
[26] [26] LEA?O J L Jr, FANG M H, LIU R S. Critical review—Narrow-band emission of nitride phosphors for light-emitting diodes: Perspectives and opportunities[J]. ECS J Solid State Sci Technol, 2017, 7(1): R3111-R3133.
[27] [27] LI Yang, QIU Jianrong. Laser Optoelectron Prog, 2021, 58(15): 35-44.
[28] [28] BESSIèRE A, JACQUART S, PRIOLKAR K, et al. ZnGa2O4:Cr3+: A new red long-lasting phosphor with high brightness[J]. Opt Express, 2011, 19(11): 10131-10137.
[29] [29] PAN Z W, LU Y Y, LIU F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nat Mater, 2011, 11(1): 58-63.
[30] [30] ZHAO Shanshan, YU Bin, LIN Yuanying, et al. Chin Sci Bull, 2019, 64(35): 3717-3729.
[31] [31] AITASALO T, H?LS? J, JUNGNER H, et al. Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates[J]. J Lumin, 2001, 94/95: 59-63.
[32] [32] DORENBOS P. Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds[J]. J Electrochem Soc, 2005, 152(7): H107.
[33] [33] CLABAU F, ROCQUEFELTE X, JOBIC S, et al. Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+[J]. Chem Mater, 2005, 17(15): 3904-3912.
[34] [34] AITASALO T, H?LS? J, JUNGNER H, et al. Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+, R3+[J]. J Phys Chem B, 2006, 110(10): 4589-4598.
[35] [35] CHANG C K, MAO D L, SHEN J F, et al. Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties[J]. J Alloys Compd, 2003, 348(1/2): 224-230.
[36] [36] JIA D, WANG X J, JIA W, et al. Persistent energy transfer in CaAl2O4:Tb3+, ?Ce3+[J]. J Appl Phys, 2003, 93(1): 148-152.
[37] [37] JIA D, YEN W M. Enhanced VK3+ center afterglow in MgAl2O4 by doping with Ce3+[J]. J Lumin, 2003, 101(1/2): 115-121.
[38] [38] UEDA J, SHINODA T, TANABE S. Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 ceramics[J]. Opt Mater Express, 2013, 3(6): 787.
[39] [39] KATAYAMA Y, KOBAYASHI H, TANABE S. Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging[J]. Appl Phys Express, 2015, 8(1): 012102.
[40] [40] DU J R, DE CLERCQ O Q, POELMAN D. Thermoluminescence and near-infrared persistent luminescence in LaAlO3:Mn4+, R (R=Na+, Ca2+, Sr2+, Ba2+) ceramics[J]. Ceram Int, 2018, 44(17): 21613-21620.
[41] [41] LI T S, LIU Q A, ZHU D Y, et al. Fabrication and characterizations of Eu2+-Dy3+ co-doped SrAl2O4 ceramics with persistent luminescence[J]. J Am Ceram Soc, 2023, 106(10): 5877-5886.
[42] [42] JI Z G, TIAN S, CHEN W K, et al. Enhanced long lasting persistent luminescent SrAl2O4:Eu, Dy ceramics prepared by electron beam bombardment[J]. Radiat Meas, 2013, 59: 210-213.
[43] [43] SAMPAIO D V, SOUZA N R S, SANTOS J C A, et al. Translucent and persistent luminescent SrAl2O4:Eu2+Dy3+ ceramics[J]. Ceram Int, 2016, 42(3): 4306-4312.
[44] [44] ALVES Y G S, SAMPAIO D V, SANTOS J C A, et al. Laser sintering and optical characterization of SrAl2-xBxO4:Eu, Dy ceramics[J]. Optik, 2020, 221: 165338.
[45] [45] SILVA D C, LIMA A S, SILVA J H L, et al. Laser sintering and influence of the Dy concentration on BaAl2O4:Eu2+, Dy3+ persistent luminescence ceramics[J]. J Eur Ceram Soc, 2021, 41(6): 3629-3634.
[46] [46] UEDA J, AISHIMA K, NISHIURA S, et al. Afterglow luminescence in Ce3+-doped Y3Sc2Ga3O12 Ceramics[J]. Appl Phys Express, 2011, 4(4): 042602.
[47] [47] UEDA J, AISHIMA K, TANABE S. Temperature and compositional dependence of optical and optoelectronic properties in Ce3+-doped Y3Sc2Al3?xGaxO12 (x=0, 1, 2, 3)[J]. Opt Mater, 2013, 35(11): 1952-1957.
[48] [48] DAI Z F, BOIKO V, GRZESZKIEWICZ K, et al. Effect of annealing treatment on the persistent luminescence of Y3Al2Ga3O12:Ce3+, Cr3+, Pr3+ ceramics[J]. Opt Mater, 2020, 105: 109888.
[49] [49] BOIKO V, DAI Z F, LI J, et al. Effect of Nd concentration on persistent luminescence of Y3Al2Ga3O12:Ce3+, Cr3+, Nd3+ ceramics for the near-infrared region[J]. J Lumin, 2022, 250: 119115.
[50] [50] G?UCHOWSKI P, TOMALA R, KUJAWA D, et al. Insights into the relationship between crystallite size, sintering pressure, temperature sensitivity, and persistent luminescence color of Gd2.97Pr0.03Ga3Al2O12 powders and ceramics[J]. J Phys Chem C, 2022, 126(16): 7127-7142.
[51] [51] G?UCHOWSKI P. Pressure-induced changes in the persistent luminescence of Gd2.994Ce0.006Ga3Al2O12 and Gd2.964Ce0.006Dy0.03Ga3Al2O12 nanoceramics[J]. Dalton Trans, 2022, 51(14): 5524-5533.
[52] [52] KUJAWA D, SZEWCZYK D, BOIKO V, et al. Effect of graphene addition on the thermal and persistent luminescence properties of Gd2.994Ce0.006Ga3Al2O12 and Gd2.964Ce0.006Dy0.03Ga3Al2O12 ceramics[J]. Materials, 2022, 15(7): 2606.
[53] [53] WANG Y, HUANG J Q, LIN Y Q, et al. Photoluminescence and persistent luminescence properties of Lu3ScAl4-xGaxO12:Ce3+ ceramics[J]. J Lumin, 2023, 258: 119824.
[54] [54] K?STLER W, WINNACKER A, ROSSNER W, et al. Effect of Pr-codoping on the X-ray induced afterglow of (Y, Gd)2O3:Eu[J]. J Phys Chem Solids, 1995, 56(7): 907-913.
[55] [55] TROJAN-PIEGZA J, ZYCH E. Afterglow luminescence of Lu2O3:Eu ceramics synthesized at different atmospheres[J]. J Phys Chem C, 2010, 114(9): 4215-4220.
[56] [56] CHEN S, YANG Y, ZHOU G H, et al. Characterization of afterglow-related spectroscopic effects in vacuum sintered Tb3+, Sr2+ co-doped Lu2O3 ceramics[J]. Opt Mater, 2012, 35(2): 240-243.
[57] [57] PEDROSO C C S, CARVALHO J M, RODRIGUES L C V, et al. Rapid and energy-saving microwave-assisted solid-state synthesis of Pr3+-, Eu3+-, or Tb3+-doped Lu2O3 persistent luminescence materials[J]. ACS Appl Mater Interfaces, 2016, 8(30): 19593-19604.
[58] [58] ZHUANG Y X, UEDA J, TANABE S. Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics[J]. Opt Mater Express, 2012, 2(10): 1378.
[59] [59] LUCHECHKO A, ZHYDACHEVSKYY Y, MARABA D, et al. TL and OSL properties of Mn2+-doped MgGa2O4 phosphor[J]. Opt Mater, 2018, 78: 502-507.
[60] [60] ZHANG Y, HUANG R, LIN Z X, et al. Co-dopant influence on near-infrared luminescence properties of Zn2SnO4:Cr3+, Eu3+ ceramic discs[J]. J Alloys Compd, 2016, 686: 407-412.
[61] [61] DUAN X X, YUAN M, OU K, et al. Synthesis process dependent white LPL in Zn2GeO4 ceramic and the long afterglow mechanism[J]. Mater Today Commun, 2020, 24: 100915.
[62] [62] JEDO? J, ZELER J, ZYCH E. The effect of dose on thermoluminescence of ScPO4:Eu3+ ceramic[J]. Opt Mater, 2020, 107: 110090.
[63] [63] LI Y B, MA C Y, YE W G, et al. Translucent red-emitting AlN:Mn phosphor ceramics with high luminescence thermal stability[J]. J Lumin, 2022, 244: 118688.
[64] [64] YANG C C, ZHANG X Y, KANG J, et al. Recent progress on garnet phosphor ceramics for high power solid-state lighting[J]. J Mater Sci Technol, 2023, 166: 1-20.
[65] [65] HOLLOWAY W W, KESTIGIAN M. Optical properties of cerium-activated garnet crystals[J]. J Opt Soc Am, 1969, 59(1): 60-63.
[66] [66] UEDA J, KUROISHI K, TANABE S. Yellow persistent luminescence in Ce3+-Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation[J]. Appl Phys Express, 2014, 7(6): 062201.
[67] [67] UEDA J, KUROISHI K, TANABE S. Bright persistent ceramic phosphors of Ce3+-Cr3+-codoped garnet able to store by blue light[J]. Appl Phys Lett, 2014, 104(10): 101904.
[68] [68] XU J, UEDA J, KUROISHI K, et al. Fabrication of Ce3+-Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence[J]. Scr Mater, 2015, 102: 47-50.
[69] [69] UEDA J, MIYANO S, TANABE S. Formation of deep electron traps by Yb3+ codoping leads to super-long persistent luminescence in Ce3+-doped yttrium aluminum gallium garnet phosphors[J]. ACS Appl Mater Interfaces, 2018, 10(24): 20652-20660.
[70] [70] UEDA J. Analysis of optoelectronic properties and development of new persistent phosphor in Ce3+-doped garnet ceramics[J]. J Ceram Soc Japan, 2015, 123(1444): 1059-1064.
[71] [71] UEDA J, DORENBOS P, BOS A J J, et al. Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5?xGaxO12 host via conduction band engineering[J]. J Mater Chem C, 2015, 3(22): 5642-5651.
[72] [72] XU J A, UEDA J, TANABE S. Design of deep-red persistent phosphors of Gd3Al5-xGaxO12:Cr3+ transparent ceramics sensitized by Eu3+ as an electron trap using conduction band engineering[J]. Opt Mater Express, 2015, 5(5): 963.
[73] [73] DU Q P, UEDA J, ZHENG R L, et al. Photochromism and long persistent luminescence in Pr3+-doped garnet transparent ceramic via UV or blue light up-conversion charging[J]. Adv Opt Mater, 2023, 11(7): 2202612.
[74] [74] LIU Q, WANG W L, DAI Z F, et al. Fabrication and long persistent luminescence of Ce3+-Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramics[J]. J Rare Earths, 2022, 40(11): 1699-1705.
[75] [75] MéVEL C, CARREAUD J, DELAIZIR G, et al. First ZnGa2O4 transparent ceramics[J]. J Eur Ceram Soc, 2021, 41(9): 4934-4941.
[76] [76] DAI Z F, MAO X Y, LIU Q, et al. Effect of dopant concentration on the optical characteristics of Cr3+:ZnGa2O4 transparent ceramics exhibiting persistent luminescence[J]. Opt Mater, 2022, 125: 112127.
[77] [77] ZHOU Chunming, CHEN Hang, CHEN Xu, et al. J Synth Cryst, 2023, 52(9): 1555-1569.
[78] [78] ZHUANG Y X, UEDA J, TANABE S. Multi-color persistent luminescence in transparent glass ceramics containing spinel nano-crystals with Mn2+ ions[J]. Appl Phys Lett, 2014, 105(19): 191904.
[79] [79] CHENU S, V??RON E, GENEVOIS C, et al. Long-lasting luminescent ZnGa2O4:Cr3+ transparent glass-ceramics[J]. J Mater Chem C, 2014, 2(46): 10002-10010.
[80] [80] CASTAING V, SONTAKKE A D, FERNáNDEZ-CARRIóN A J, et al. Persistent luminescence of ZnGa2O4:Cr3+ transparent glass ceramics: Effects of excitation wavelength and excitation power[J]. Eur J Inorg Chem, 2017, 2017(44): 5114-5120.
[81] [81] CASTAING V, GIORDANO L, RICHARD C, et al. Photochromism and persistent luminescence in Ni-doped ZnGa2O4 transparent glass-ceramics: Toward optical memory applications[J]. J Phys Chem C, 2021, 125(18): 10110-10120.
[82] [82] CHEN D Q. Near-infrared long-lasting phosphorescence in transparent glass ceramics embedding Cr3+-doped LiGa5O8 nanocrystals[J]. J Eur Ceram Soc, 2014, 34(15): 4069-4075.
[83] [83] LIN S S, LIN H, MA C G, et al. High-security-level multi-dimensional optical storage medium: Nanostructured glass embedded with LiGa5O8:Mn2+ with photostimulated luminescence[J]. Light Sci Appl, 2020, 9: 22.
[84] [84] LIU T P, LIU Z Y, WU J, et al. Broadband near-infrared persistent luminescence in Ni2+-doped transparent glass-ceramic ZnGa2O4[J]. New J Chem, 2022, 46(2): 851-856.
[85] [85] NAKANISHI T, TANABE S. Novel $\hbox{Eu}^{{2}} $-activated glass ceramics precipitated with green and red phosphors for high-power white LED[J]. IEEE J Sel Top Quantum Electron, 2009, 15(4): 1171-1176.
[86] [86] NAKANISHI T, KATAYAMA Y, UEDA J, et al. Fabrication of Eu:SrAl2O4-based glass ceramics using Frozen sorbet method[J]. J Ceram Soc Japan, 2011, 119(1391): 609-615.
[87] [87] AKANISHI T. Preparation of europium-activated SrAl2O4 glass composites using the frozen sorbet technique[J]. J Ceram Soc Japan, 2015, 123(1441): 862-867.
[88] [88] HU T, LIN H, XU J, et al. Color-tunable persistent luminescence in oxyfluoride glass and glass ceramic containing Mn2+: α-Zn2SiO4 nanocrystals[J]. J Mater Chem C, 2017, 5(6): 1479-1487.
[89] [89] ABDEL-HAMEED S A M, MARZOUK M A. Long afterglow from multi dopant transparent and opaque glass ceramic phosphor for white, red, yellow, and blue emissions: Zn2SiO4:Eu3+, Dy3+, Mn2+[J]. J Alloys Compd, 2022, 893: 162337.
Get Citation
Copy Citation Text
ZHOU Zihan, ZHOU Tianyuan, TIAN Wen, ZHENG Xingyu, WANG Siqing, QIU Fan, CHEN Dongshun, SHAO Cen, KANG Jian, CHEN Hao, ZHANG Le. Research Progress on Long Afterglow Ceramic Materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1065
Category:
Received: Oct. 9, 2023
Accepted: --
Published Online: Aug. 5, 2024
The Author Email: Tianyuan ZHOU (tianyuanzhou@foxmail.com)
CSTR:32186.14.