Nano-Micro Letters, Volume. 17, Issue 1, 038(2025)
Porous Organic Cage-Based Quasi-Solid-State Electrolyte with Cavity-Induced Anion-Trapping Effect for Long-Life Lithium Metal Batteries
[1] [1] A. Li, X. Liao, H. Zhang, L. Shi, P. Wang et al., Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 32, e1905517 (2020).
[2] [2] C.Y. Wang, T. Liu, X.G. Yang, S. Ge, N.V. Stanley et al., Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022).
[3] [3] J. Liu, Y. Zhang, J. Zhou, Z. Wang, P. Zhu et al., Advances and prospects in improving the utilization efficiency of lithium for high energy density lithium batteries. Adv. Funct. Mater. 33, 2302055 (2023).
[4] [4] B. Acebedo, M.C. Morant, E. Gonzalo, I. Ruiz de Larramendi, A. Villaverde et al., Current status and future perspective on lithium metal anode production methods. Adv. Energy Mater. 13, 2203744 (2023).
[5] [5] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).
[6] [6] P. Bonnick, J. Muldoon, The quest for the holy grail of solid-state lithium batteries. Energy Environ. Sci. 15, 1840–1860 (2022).
[7] [7] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotech. 12, 194–206 (2017).
[8] [8] R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020).
[9] [9] L. Qian, T. Or, Y. Zheng, M. Li, D. Karim et al., Critical operation strategies toward high-performance lithium metal batteries. Renewables 1, 114–141 (2023).
[10] [10] M.J. Wang, E. Kazyak, N.P. Dasgupta, J. Sakamoto, Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations. Joule 5, 1371–1390 (2021).
[11] [11] T. Zhang, W. He, W. Zhang, T. Wang, P. Li et al., Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chem. Sci. 11, 8686–8707 (2020).
[12] [12] J. Lee, T. Lee, K. Char, K.J. Kim, J.W. Choi, Issues and advances in scaling up sulfide-based all-solid-state batteries. Acc. Chem. Res. 54, 3390–3402 (2021).
[13] [13] C. Liao, C. Yu, S. Chen, C. Wei, Z. Wu et al., Mitigation of the instability of ultrafast li-ion conductor Li6.6Si0.6Sb0.4S5I enables high-performance all-solid-state batteries. Renewables 1, 266–276 (2023).
[14] [14] M. Dirican, C. Yan, P. Zhu, X. Zhang, Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng., R 136, 27–46 (2019).
[15] [15] S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 5, 753–785 (2019).
[16] [16] Z. Liu, W. Chen, F. Zhang, F. Wu, R. Chen et al., Hollow-particles quasi-solid-state electrolytes with biomimetic ion channels for high-performance lithium-metal batteries. Small 19, e2206655 (2023).
[17] [17] Q. Zhang, B. Liu, J. Wang, Q. Li, D. Li et al., The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery. ACS Energy Lett. 5, 2919–2926 (2020).
[18] [18] J. Zhou, H. Ji, J. Liu, T. Qian, C. Yan, A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Mater. 22, 256–264 (2019).
[19] [19] T. Hou, W. Xu, X. Pei, L. Jiang, O.M. Yaghi et al., Ionic conduction mechanism and design of metal-organic framework based quasi-solid-state electrolytes. J. Am. Chem. Soc. 144, 13446–13450 (2022).
[20] [20] T. Tozawa, J.T. Jones, S.I. Swamy, S. Jiang, D.J. Adams et al., Porous organic cages. Nat. Mater. 8, 973–978 (2009).
[21] [21] D.X. Cui, Y. Geng, J.N. Kou, G.G. Shan, C.Y. Sun et al., Chiral self-sorting and guest recognition of porous aromatic cages. Nat. Commun. 13, 4011 (2022).
[22] [22] A. He, Z. Jiang, Y. Wu, H. Hussain, J. Rawle et al., A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 21, 463–470 (2022).
[23] [23] Q. Zhang, H. Li, S. Chen, J. Duan, W. Jin, Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation. J. Membr. Sci. 611, 118288 (2020).
[24] [24] T. Xu, B. Wu, L. Hou, Y. Zhu, F. Sheng et al., Highly ion-permselective porous organic cage membranes with hierarchical channels. J. Am. Chem. Soc. 144, 10220–10229 (2022).
[25] [25] K. Tian, S.M. Elbert, X.Y. Hu, T. Kirschbaum, W.S. Zhang et al., Highly selective adsorption of perfluorinated greenhouse gases by porous organic cages. Adv. Mater. 34, e2202290 (2022).
[26] [26] P.E. Alexandre, W.S. Zhang, F. Rominger, S.M. Elbert, R.R. Schröder et al., A robust porous quinoline cage: transformation of a [4+6] salicylimine cage by povarov cyclization. Angew. Chem. Int. Ed. 59, 19675–19679 (2020).
[27] [27] X. Yang, Z. Ullah, J.F. Stoddart, C.T. Yavuz, Porous organic cages. Chem. Rev. 123, 4602–4634 (2023).
[28] [28] J.F. Zhang, Y.Y. Wang, X.F. Li, G.Y. Zhang, Y. Li et al., ZIF-8-functionalized polymer electrolyte with enhanced performance for high-temperature solid-state lithium metal batteries. Rare Met. 43, 984–994 (2023).
[29] [29] X. Guan, Z. Jian, X. Liao, W. Liao, Y. Huang et al., Tailored architecture of composite electrolyte for all-solid-state sodium batteries with superior rate performance and cycle life. Nano Res. 17, 4171–4180 (2024).
[30] [30] T. Hasell, A.I. Cooper, Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 1–14 (2016).
[31] [31] R. Zhao, Y. Wu, Z. Liang, L. Gao, W. Xia et al., Metal-organic frameworks for solid-state electrolytes. Energy Environ. Sci. 13, 2386–2403 (2020).
[32] [32] G. Zhang, Y.L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa et al., Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J. Am. Chem. Soc. 141, 1227–1234 (2019).
[33] [33] W. Gong, Y. Ouyang, S. Guo, Y. Xiao, Q. Zeng et al., Covalent organic framework with multi-cationic molecular chains for gate mechanism controlled superionic conduction in all-solid-state batteries. Angew. Chem. Int. Ed., e202302505 (2023).
[34] [34] Y. An, S. Tan, Y. Liu, K. Zhu, L. Hu et al., Designs and applications of multi-functional covalent organic frameworks in rechargeable batteries. Energy Storage Mater. 41, 354–379 (2021).
[35] [35] Z. Wang, Z. Wang, L. Yang, H. Wang, Y. Song et al., Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries. Nano Energy 49, 580–587 (2018).
[36] [36] C. Zhang, L. Shen, J. Shen, F. Liu, G. Chen et al., Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv. Mater. 31, e1808338 (2019).
[37] [37] M. Liu, L. Chen, S. Lewis, S.Y. Chong, M.A. Little et al., Three-dimensional protonic conductivity in porous organic cage solids. Nat. Commun. 7, 12750 (2016).
[38] [38] A. Petronico, B.G. Nicolau, J.S. Moore, R.G. Nuzzo, A.A. Gewirth, Solid-liquid lithium electrolyte nanocomposites derived from porous molecular cages. J. Am. Chem. Soc. 140, 7504–7509 (2018).
[39] [39] J. Li, J. Qi, F. Jin, F. Zhang, L. Zheng et al., Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor. Nat. Commun. 13, 2031 (2022).
[40] [40] M. Liu, M.A. Little, K.E. Jelfs, J.T. Jones, M. Schmidtmann et al., Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic "tying" of a flexible amine cage. J. Am. Chem. Soc. 136, 7583–7586 (2014).
[41] [41] X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).
[42] [42] S. Lee, A. Yang, T.P.II. Moneypenny, J.S. Moore, Kinetically trapped tetrahedral cages via alkyne metathesis. J. Am. Chem. Soc. 138, 2182–2185 (2016).
[43] [43] H. Wang, S. Fang, G. Wu, Y. Lei, Q. Chen et al., Constraining homo- and heteroanion dimers in ultraclose proximity within a self-assembled hexacationic cage. J. Am. Chem. Soc. 142, 20182–20190 (2020).
[44] [44] K. Li, L.Y. Zhang, C. Yan, S.C. Wei, M. Pan et al., Stepwise assembly of Pd6(RuL3)8 nanoscale rhombododecahedral metal-organic cages via metalloligand strategy for guest trapping and protection. J. Am. Chem. Soc. 136, 4456–4459 (2014).
[45] [45] Z. Chang, H. Yang, X. Zhu, P. He, H. Zhou, A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 13, 1510 (2022).
[46] [46] Z. Chang, Y. Qiao, H. Yang, X. Cao, X. Zhu et al., Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem. Int. Ed. 60, 15572–15581 (2021).
Get Citation
Copy Citation Text
Wei-Min Qin, Zhongliang Li, Wen-Xia Su, Jia-Min Hu, Hanqin Zou, Zhixuan Wu, Zhiqin Ruan, Yue-Peng Cai, Kang Li, Qifeng Zheng. Porous Organic Cage-Based Quasi-Solid-State Electrolyte with Cavity-Induced Anion-Trapping Effect for Long-Life Lithium Metal Batteries[J]. Nano-Micro Letters, 2025, 17(1): 038
Category: Research Articles
Received: May. 4, 2024
Accepted: Aug. 6, 2024
Published Online: Feb. 12, 2025
The Author Email: Cai Yue-Peng (caiyp@scnu.edu.cn), Li Kang (likang5@m.scnu.edu.cn), Zheng Qifeng (qifeng.zheng@m.scnu.edu.cn)