High Power Laser and Particle Beams, Volume. 32, Issue 12, 121003(2020)

Ten-year review and prospect on mode instability research of fiber lasers

Jianjun Wang... Yu Liu, Min Li, Xi Feng, Qiuhui Chu, Chun Zhang, Cong Gao, Rumao Tao*, Honghuan Lin and Feng Jing |Show fewer author(s)
Author Affiliations
  • Laser Fusion Research Center, CAEP, P. O. Box 919-988, Mianyang 621900, China
  • show less
    References(110)

    [5] Zervas M N, Codemard C A. High power fiber lasers: A review[J]. IEEE J Sel Top Quantum Electron, 20(11), 219-241(2014).

    [9] [9] Stiles E. New developments in IPG fiber laser technology[C]Proc 5th Int Wkshop Fiber Lasers. 2009.

    [11] [11] Shiner B. The impact of fiber laser technology on the wld wide material processing market[C]Proc Conf Lasers ElectroOpt. 2013: AF2J.1.

    [16] Fang Q, Li J, Shi W. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics J, 9, 1506107(2017).

    [17] [17] Möller F, Krämer R, Matzdf C, et al. MultikW perfmance analysis of Ybdoped monolithic singlemode amplifier oscillat setup[C]Proc of SPIE. 2019: 108970D.

    [18] Ye Y, Xi X, Shi C. Experimental study of 5 kW high stability monolithic fiber laser oscillator with or without external feedback[J]. IEEE Photonics J, 11, 1503508(2019).

    [22] [22] Tao R M, Ma P F, Wang X L, et al. Study of mode instabilities in high power fiber amplifiers by detecting scattering light[C]International Photonics OptoElectronics Meetings. 2014.

    [26] [26] Tao R, Ma P, Wang X, et al. 1.4 kW allfiber narrowlinewidth polarizationmaintained fiber amplifier[C]The 20th International Symposium on HighPower Laser Systems Applications. 2014.

    [27] Tao R, Ma P, Wang X. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 17, 045504(2015).

    [30] [30] Yang B L, Zhang H W, Shi C, et al. 3.05 kW monolithic fiber laser oscillat with simultaneous optimizations of stimulated Raman scattering transverse mode instability[J]. Journal of Optics, 2018, 20: 025802.

    [31] [31] Malleville M, Benoît A, Dauliat R, et al. Experimental investigation of the transverse modal instabilities onset in high power fullyaperiodiclargepitch fiber lasers[C]Proc of SPIE. 2018: 1051206.

    [33] [33] Roohfouz A, Chenar R, Azizi S, et al. Effect of pumping configuration on the transverse mode instability power threshold in a 3.02 kW fiber laser oscillat[C]OSA Laser Congress. 2019.

    [34] Chen H, Cao J, Huang Z. Experimental investigations on TMI and IM-FWM in distributed side-pumped fiber amplifier[J]. IEEE Photonics J, 12, 1502413(2020).

    [41] [41] Hu I N, Zhu C, Zhang C, et al. Analytical timedependent they of thermallyinduced modal instabilities in high power fiber amplifiers[C]Proc of SPIE. 2013: 860109.

    [42] Jauregui C, Eidam T, Otto H J. Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems[J]. Opt Express, 21, 440-451(2012).

    [46] [46] Smith A V, Smith J J. Review of models of mode instability in fiber amplifiers[EBOL]. http:asphotonics.com.

    [47] [47] Ward B. Numerical analysis of modal instability onset in fiber amplifiers[C]Proc of SPIE. 2014: 89611U.

    [48] [48] Naderi S, Dajani I, Grosek J, et al. Theetical treatment of modal instability in high power claddingpumped Raman amplifiers[C]Proc of SPIE. 2015: 93442X.

    [52] [52] Eznaveh Z S, LopezGalmiche G, AntonioLopez E, et al. Bidirectional pump configuration f increasing thermal modal instabilities threshold in high power fiber amplifiers[C]Proc of SPIE. 2015: 93442G.

    [54] Wang Y, Liu Q, Ma Y. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers[J]. Ann Phys, 1600398(2017).

    [58] [58] Mermelstein M. Laser linewidth dependence to the transverse mode instability (TMI) nonlinear gain in kWclass fiber amplifiers[C]Proc of SPIE. 2018: 1051221.

    [63] [63] Zervas M. Transverse mode instability analysis in fibre amplifiers[C]Proc of SPIE. 2017: 100830M.

    [65] [65] Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]Proc of SPIE. 2013: 860108.

    [67] Tao R, Ma P, Wang X. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE J Quantum Electron, 51, 1600106(2015).

    [68] [68] Filippov V, Ustimchik V, Chamovskiy Y, et al. Impact of axial profile of the gain medium on the mode instability in lasers: regular versus tapered fibers[C]Cleoeuropeeqec P Cj105 1 P Cj. 2015.

    [69] [69] Stihler C, Otto HJ, Jauregui C, et al. Experimental investigation of transverse mode instabilities in a doublepass Ybdoped rodtype fiber amplifier[C]Proc of SPIE. 2017: 100830R.

    [70] Bobkov K, Bubnov M, Aleshkina S. Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifers[J]. Laser Phys Lett, 14, 015102(2017).

    [73] [73] Gaida C, Gebhardt C, Heuermann T, et al. Observation of transversemode instabilities in a thuliumdoped fiber amplifier[C]Proc of SPIE. 2019: 1089702.

    [74] [74] Distler V, Möller F, Strecker M, et al. High power narrowlinewidth Raman amplifier its limitation[C]Proc of SPIE. 2020: 1126005.

    [80] Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE J Sel Top Quant Electron, 24, 0903319(2018).

    [82] [82] Ward B. Accurate modeling of rodtype photonic crystal fiber amplifiers[C]Proc of SPIE. 2015: 97280F.

    [83] [83] Xia N. Investigation of transverse mode instability suppression in large mode area fibre[D]. Singape: Nanyang Technological University Library. 2019.

    [88] [88] Tao R, Ma P, Wang X, et al. A novel theetical model f mode instability in high power fiber lasers[C]Advanced Solid State Lasers. 2014: AM5A20.

    [90] [90] Stihler C, Jauregui C, Kholaif S, et al. The sensitivity of the mode instability threshold to different types of intensity noise[C]Proc of SPIE. 2020, 11260: 1126018.

    [91] [91] Tao R, Liu Y, Xie L, et al. Static dynamic mode evolution behavi in high power distributed sidecoupled claddingpumped fiber amplifiers[J]. submitted.

    [95] [95] Goodno G D, McNaught S, Thielen P, et al. Polarization control with mode stability: US8922877B1[P]. 2014XXXX.

    [96] [96] Lei M, Qi Y, Liu C, et al. Mode controlling study on narrowlinewidth high power allfiber amplifier[C]Proc of SPIE. 2015, 9543: 95431L.

    [99] [99] Walny M, Abramczyk J, Jacobson N, et al. Mechanical reliability of double clad fibers in typical fiber laser deployment conditions[C]Proc of SPIE. 2016: 97283A.

    [102] [102] RosalesGarcia A, Tobioka H, Abedin K, et al. 2.1 kW single mode continuous wave monolithic fiber laser[C]Proc of SPIE. 2015: 93441G.

    [103] [103] Kanskar M, Zhang J, Koponen J, et al. Narrowb transversemodalinstability (TMI)free Ybdoped fiber amplifiers f directed energy application[C]Proc of SPIE. 2018: 105120F.

    [105] [105] HansJürgen Otto, Jauregui C, Stutzki F, et al. Dependence of mode instabilities on the extracted power of fiber laser systems[C]Advanced Solid State Lasers. 2013.

    [107] [107] Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffractionlimited fiber amplifier with 40 nm bwidth[C]Proc of SPIE. 2015: 972807.

    [108] [108] Platonov N, Shkurikhin O, Fomin V, et al. Highly efficient kW level singlemode ytterbium fiber lasers in allfiber fmat with diffractionlimited beam at wavelengths in 10001030 nm spectral range[C]Proc of SPIE. 2020: 1126003.

    [115] [115] Möller F, Krämer R, Matzdf C, et al. MultikW perfmance analysis of Ybdoped monolithic singlemode amplifier oscillat setup[C]Proc of SPIE. 2019: 108970D.

    [116] [116] Wang Y, Kitahara R, Kiyoyama W, et al. 8kW singlestage allfiber Ybdoped fiber laser with a BPP of 0.50 mmmrad[C]Proc of SPIE. 2020: 1126022.

    [117] [117] Möller F, Distler V, Schreiber T, et al. Manipulating the heat load distribution by laser gain competition in TMIlimited fiber amplifiers[C]Proc of SPIE. 2020: 1126019.

    [118] [118] Gaida C, Gebhardt M, Heuermann T, et al. Observation of transversemode instabilities in a thuliumdoped fiber amplifier[C]Proc of SPIE. 2019: 1089702.

    [119] [119] Distler V, Möller F, Strecker M, et al. High power narrowlinewidth Raman amplifier its limitation[C]Proc of SPIE. 2020: 1126005.

    [121] [121] Stihler C, Jauregui C, Kholaif S, et al. The sensitivity of the mode instability threshold to different types of intensity noise[C]Proc of SPIE. 2020: 1126018.

    CLP Journals

    [1] Yuefang Yan, Rumao Tao, Yu Liu, Yuwei Li, Haoyu Zhang, Qiuhui Chu, Min Li, Qiang Shu, Xi Feng, Wenhui Huang, Feng Jing. Research progress and prospect of high power all-fiber coherent beam combination based on fiber combining devices[J]. High Power Laser and Particle Beams, 2023, 35(4): 041005

    Tools

    Get Citation

    Copy Citation Text

    Jianjun Wang, Yu Liu, Min Li, Xi Feng, Qiuhui Chu, Chun Zhang, Cong Gao, Rumao Tao, Honghuan Lin, Feng Jing. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32(12): 121003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Laser

    Received: Jun. 30, 2020

    Accepted: --

    Published Online: Jan. 6, 2021

    The Author Email: Tao Rumao (taorumao@sohu.com)

    DOI:10.11884/HPLPB202032.200180

    Topics