Electro-Optic Technology Application, Volume. 24, Issue 5, 17(2009)
Advances in Third-Generation HgCdTe Devices
[1] [1] D Reago, S Horn, J Campbell,et al. Third generation imaging sensor system concepts[C]//SPIE Proceeding,1999,3701:108-117.
[2] [2] A Rogalski. Competitive technologies of third generation infrared photon detectors[J]. Opto-Electronics Review, 2006,14(1):87-101.
[3] [3] A Rogalski, J Antoszewski, L Faraone. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009,105(9):1103.
[4] [4] P Norton. HgCdTe infrared detectors[J]. Opto-Electronics Review, 2002,10(3): 159-174.
[5] [5] S Horn, P Norton, T Cincotta, et al. Challenges for third-generation cooled imagers[C]//SPIE Proceeding, 2003, 5074:44-51.
[6] [6] Philippe Tribolet, Philippe Chorier, Frédéric Pistone. Key performance drivers for cooled large IR staring arrays[C]//SPIE Proceeding, 2003, 5074:173-184.
[7] [7] M Z Tidrow, W R Dyer. Infrared sensors for ballistic missile defense [J]. Infrared Physics & Technology, 2001,42(3/5):333-336.
[8] [8] G L Hansen, J L Schmit, T N Casselman. Energy gap versus alloy composition and temperature in Hg1-xCdxTe[J]. Journal of Applied Physics, 1982, 53(10):7099-7101.
[9] [9] H D Shih, M A Kinch, F Aqariden, et al. Development of gold-doped HgCdTe for very-long-wavelength infrared detectors[J].Applied Physics Letters, 2003,82(23):4157.
[10] [10] Angelo Scotty Gilmore, James Bangs, Amanda Gerrish. VLWIR HgCdTe Detector Current-Voltage Analysis[J].Journal of Electronic Materials,2006,35(6):1403-1410.
[11] [11] O Gravrand, E De Borniol, S Bisotto, et al. From Long Infrared to Very Long Infrared Wavelength Focal Plane Arrays Made with HgCdTe n+ n-/ p Ion Implantation Technology[J]. Journal of Electronic Materials, 2007,36(8):981-987.
[12] [12] A L Betz, R T BOreiko. Space application for HgCdTe at FIR wavelengths between 50 and 150 m[C]// SPIE Proceeding, 2001, 4454:1-9.
[13] [13] R K Bhan, S K Koul, V Gopal, et al. A new method to monitor composition orcut-off wavelength variations in HgCdTe photodiode arrays using current-voltage characteristics[J]. Semiconductor Science and Technology, 2001,16(5):293-299.
[14] [14] J Wenus, J Rutkowski, A Rogalski. Analysis of VLWIR HgCdTe photodiode performance[J]. Opto-Electronics Review, 2003,11(2):143-149.
[15] [15] T Parodos, E A Fitzgerald, A Caster, et al. Effect of Dislocations on VLWIR HgCdTe Photodiodes[J]. Journal of Electronic Materials,2007,36(8):1068-1076.
[16] [16] John Lester Miller. Principles of infrared technology: A practical guide to the state of the art[M]. New York:Springer, 1994 .
[18] [18] Antoni Rogalski. Heterostructure infrared photovoltaic detectors[J]. Infrared Physics & Technology, 2000,41(4):213-238.
[19] [19] E P G Smith, G M Venzor, M D Newton, et al. Inductively coupled plasma etching for large format HgCdTe focal plane array fabrication[J]. Journal of Electronic Materials, 2005,34(6):746-753.
[20] [20] M Chu, H K Gurgenian, S Mesropian,et al. Advanced HgCdTe focal plane arrays[C]//SPIE Proceeding, 2003, 5074:103-110.
[21] [21] E P G Smith, E A Patten, P M Goetz, et al. Fabrication and characterization of two-color midwavelength/long wavelength HgCdTe infrared detectors[J]. Journal of Electronic Materials, 2006,35(6):1145-1152.
[22] [22] E P G Smith, G M Venzor, Y Petraitis, et al. Fabrication and Characterization of Small Unit-Cell Molecular Beam Epitaxy Grown HgCdTe-on-Si Mid-WavelengthInfrared Detectors[J]. Journal of Electronic Materials, 2007,36(8):1045-1051.
[23] [23] E P G Smith, L T Pham, G M Venzor, et al. HgCdTe focal plane arrays for dual-color mid- and long-wavelength infrared detection[J]. Journal of Electronic Materials,2004,33(6):509-516.
[24] [24] R D Rajavel, D M Jamba, J E Jenson, et al. Molecular beam epitaxial growth and performance of HgCdTe-based simultaneous-mode two-color infrared detectors[J]. Journal of Electronic Materials, 1998,27(6):747-751.
[25] [25] P Mitra, S L Barnes, F C Case, et al. MOCVD of bandgap-engineered HgCdTe p-n-N-P dual-band infrared detector arrays[J]. Journal of Electronic Materials, 1997,26(6):482-487.
[26] [26] Arnold Goldberg,et al. Large format and multi-spectral QWIP infrared focal plane arrays[C]//SPIE Proceeding, 2003, 5074:83-94.
[27] [27] W A Radford, E A Patten, D F King, et al. Third generation FPA development status at Raytheon Vision Systems[C]//SPIE Proceeding, 2005, 5783:331-339.
[28] [28] Philippe Tribolet. Sofradir backs a two-tone approach[J]. Compound Semiconductor, 2009(1):29-31.
[29] [29] Jeffrey D Beck, Chang-Feng Wan, Michael A Kinch, et al. MWIR HgCdTe avalanche photodiodes[C]//SPIE Proceeding, 2001, 4454:188-197.
[30] [30] F Emami, M Frdosiyan Tehrani. Noise Reduction and Simulation in Avalanche Photodiodes[J]. International Journal of Communications, 2008,2(1):17-26.
[31] [31] J Beck, C Wan, M Kinch, et al. The HgCdTe Electron Avalanche Photodiode[J]. IEEE LEOS NEWSLETTER,2006(10):8-12.
[32] [32] M Kinch, J Beck, C Wan, et al. Journal of Electronic Materials[J],2004,33(6):630-639.
[33] [33] M Jack, J Asbrock, C Anderson, et al. Advances in linear and area HgCdTe APD arrays for eyesafe LADAR sensors[C]//SPIE Proceeding, 2002, 4454:198-206.
Get Citation
Copy Citation Text
WANG Yi-feng, TANG Li-bin. Advances in Third-Generation HgCdTe Devices[J]. Electro-Optic Technology Application, 2009, 24(5): 17
Category:
Received: Jul. 28, 2009
Accepted: --
Published Online: Dec. 30, 2009
The Author Email:
CSTR:32186.14.