Journal of the Chinese Ceramic Society, Volume. 50, Issue 3, 587(2022)
Recent Development on (K,Na)NbO3-based Lead-free Piezoceramics
[1] [1] LI J F. Lead-free piezoelectric materials [M]. Wiley-VCH, 2020.
[2] [2] SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(4): 84-87.
[3] [3] RDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application[J]. J Euro Ceram Soc, 2015, 35(6): 1659-1681.
[4] [4] LI J F, WANG K, ZHU F Y, et al. (K,Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges[J]. J Am Ceram Soc, 2013, 96(12): 3677-3696.
[6] [6] LV X, ZHANG X X, WU J. Nano-domains in lead-free piezoceramics: A review[J]. J Mater Chem A, 2020, 8(20): 10026-10073.
[8] [8] ZHANG H, CHAO C, ZHAO X, et al. Enhanced ferroelectric properties and thermal stability of nonstoichiometric 0.92(Na0.5Bi0.5)TiO3-0.08(K0.5Bi0.5)TiO3 single crystals[J]. Appl Phys Lett, 2013, 103(21): 2651.
[9] [9] CHEN C, ZHAO X, WANG Y J, et al. Giant strain and electric-field-induced phase transition in lead-free (Na0.5Bi0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3 single crystal[J]. Appl Phys Lett, 2016, 108(2): 022903.
[10] [10] LIU Q, ZHANG Y, GAO J, et al. High-performance lead-free piezoelectrics with local structural heterogeneity[J]. Energy Environ Sci, 2018, 11(12): 3531-3539.
[11] [11] ZHANG M H, WANG K, DU Y J, et al. High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite[J]. J Am Chem Soc, 2017, 139(10): 3889-3895.
[12] [12] YAO F Z, WANG K, JO W, et al. Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics[J]. Adv Funct Mater, 2016, 26(8): 1217-1224.
[13] [13] WANG K, SHEN Z Y, ZHANG B P, et al. (K, Na)NbO3-based lead-free piezoceramics: Status, prospects and challenges[J]. J Inorg Mater, 2014, 29(1): 13-22.
[14] [14] LIU Q, ZHANG Y, GAO J, et al. Practical high-performance lead-free piezoelectrics: structural flexibility beyond utilizing multiphase coexistence[J]. Natl Sci Rev, 2020, 7(2): 355-365.
[15] [15] TAO H, WU H, LIU Y, et al. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence[J]. J Am Chem Soc, 2019, 141(35): 13987-13994.
[16] [16] ZHENG T, WU H J, YUAN Y, et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics[J]. Energy Environ Sci, 2017, 10(2): 528-537.
[17] [17] WU B, WU H, WU J, et al. Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence[J]. J Am Chem Soc, 2016, 138(47): 15459-15464.
[18] [18] WANG X, WU J, XIAO D, et al. Large d33 in (K,Na)(Nb,Ta,Sb)O3-(Bi,Na,K)ZrO3 lead-free ceramics[J]. J Mater Chem A, 2014, 2(12): 4122-4126.
[19] [19] WU J, XIAO D, ZHU J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries[J]. Chem Rev, 2015, 115(7): 2559-2595.
[20] [20] LI P, ZHAI J, SHEN B, et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics[J]. Adv Mater, 2018, 30(8): 1705171.
[21] [21] LI P, FU Z, WANG F, et al. High piezoelectricity and stable output in BaHfO3 and (Bi0.5Na0.5)ZrO3 modified (K0.5Na0.5)(Nb0.96Sb0.04)O3 textured ceramics[J]. Acta Mater, 2020, 199: 542-550.
[22] [22] LI P, CHEN X, WANG F, et al. Microscopic insight into electric fatigue resistance and thermally stable piezoelectric properties of (K,Na)NbO3-based ceramics[J]. ACS Appl Mater Interfaces, 2018, 10(34): 28772-28779.
[23] [23] ZHANG J, PAN Z, GUO F F, et al. Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics[J]. Nat Commun, 2015, 6: 6615.
[24] [24] FAN Z, ZHOU L, KIM T H, et al. Mechanisms of enhanced thermal stability of polarization in lead-free (Bi1/2Na1/2)0.94Ba0.06TiO3/ZnO ceramic composites[J]. Phys Rev Mater, 2019, 3(2): 024402.
[25] [25] HU C, MENG X, ZHANG M H, et al. Ultra-large electric field-induced strain in potassium sodium niobate crystals[J]. Sci Adv, 2020, 6: 5979.
[26] [26] XUE D Z, BALACHANDRAN P V, YUAN R H, et al. Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using bayesian learning[J]. Proc Natl Acad Sci USA, 2016, 113(47): 13301-13306.
[27] [27] GUO Y, KAKIMOTO K, OHSATO H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics[J]. Appl Phys Lett, 2004, 85(18): 4121-4123.
[28] [28] CHANG Y, POTERALA S, YANG Z, et al. Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics[J]. J Am Ceram Soc, 2011, 94(8): 2494-2498.
[29] [29] YANG Z, CHANG Y, WEI L. Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 piezoelectric ceramics[J]. Appl Phys Lett, 2007, 90(4): 042911.
[30] [30] LI H T, ZHANG B P, SHANG P P, et al. Phase transition and high piezoelectric properties of Li0.058(Na0.52+xK0.48)0.942NbO3 lead-free ceramics[J]. J Am Ceram Soc, 2010, 94(2): 628-632.
[33] [33] ZHENG L, WANG J, LIU X, et al. Tetragonal (K,Na)NbO3 based lead-free single crystal: growth, full tensor properties, and their orientation dependence[J]. Appl Phys Lett, 2017, 111(17): 172903.
[34] [34] CEN Z, BIAN S, XU Z, et al. Simultaneously improving piezoelectric properties and temperature stability of Na0.5K0.5NbO3 (KNN)-based ceramics sintered in reducing atmosphere[J]. J Adv Ceram, 2021, 10(4): 820-831.
[35] [35] ZHANG M H, HU C, ZHOU Z, et al. Determination of polarization states in (K,Na)NbO3 lead-free piezoelectric crystal[J]. J Adv Ceram, 2020, 9(2): 204-209.
[36] [36] LIU W F, REN X B. Large piezoelectric effect in Pb-free ceramics[J]. Phys Rev Lett, 2009, 103(25): 257602.
[37] [37] TADASHI T, KEI-ICHI M, KOICHIRO S. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics[J]. Jpn J Appl Phys, 1991, 30(9B): 2236-2239.
[38] [38] ZHANG S T, KOUNGA A B, AULBACH E, et al. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system[J]. Appl Phys Lett, 2007, 91(11): 112906.
[39] [39] LI J Y, ROGAN R C, USTUNDAG E, et al. Domain switching in polycrystalline ferroelectric ceramics[J]. Nat Mater, 2005, 4(10): 776-781.
[40] [40] ZHANG S, XIA R, SHROUT T R, et al. Piezoelectric properties in perovskite 0.948K0.5Na0.5NbO3-0.052LiSbO3 lead-free ceramics[J]. J Appl Phys, 2006, 100(10): 104108.
[41] [41] DAI Y, ZHANG X, ZHOU G. Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics[J]. Appl Phys Lett, 2007, 90(26): 262903.
[42] [42] ZHAO P, ZHANG B P. High piezoelectric d33 coefficient in Li/Ta/Sb-codoped lead-free (Na,K)NbO3 ceramics sintered at optimal temperature[J]. J Am Ceram Soc, 2008, 91(11): 3078-3081.
[44] [44] LIN D, KWOK KW, CHAN HLW. Dielectric and piezoelectric properties of K0.5Na 0.5NbO3-AgSbO3 lead-free ceramics[J]. J Appl Phys, 2009, 106(3): 034102.
[45] [45] SUN X, CHEN J, YU R, et al. BiScO3 doped (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics[J]. J Am Ceram Soc, 2009, 92(1): 130-132.
[46] [46] WANG R, BANDO H, ITOH M. Universality in phase diagram of (K,Na)NbO3-MTiO3 solid solutions[J]. Appl Phys Lett, 2009, 95(9): 092905.
[47] [47] LIANG W, WU W, XIAO D, et al. Effect of the addition of CaZrO3 and LiNbO3 on the phase transitions and piezoelectric properties of K0.5Na0.5NbO3 lead-free ceramics[J]. J Am Ceram Soc, 2011, 94(12): 4317-4322.
[48] [48] ZHOU J J, WANG K, LI J F, et al. Wang. High and frequency-insensitive converse piezoelectric coefficient obtained in AgSbO3-modified (Li,K,Na)(Nb,Ta)O3lead-free piezoceramics[J]. J Am Ceram Soc, 2012, 96(2): 519-524.
[49] [49] ZUO R, FU J. Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (Na,K)(Nb,Sb)O3-LiTaO3-BaZrO3 lead-free ceramics[J]. J Am Ceram Soc, 2011, 94(5): 1467-1470.
[50] [50] WANG R, WANG K, YAO F Z, et al. Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary[J]. J Am Ceram Soc, 2015, 98(7): 2177-2182.
[51] [51] TOMOAKI K, TSUNEHIRO K, KAZUHIRO Y, et al. Morphotropic phase boundary slope of (K,Na,Li)NbO3-BaZrO3 binary system adjusted using third component (Bi,Na)TiO3 additive[J]. Jpn J Appl Phys, 2013, 52(9): 09KD11.
[52] [52] YANG W, LI P, WU S, et al. A study on the relationship between grain size and electrical properties in (K,Na)NbO3-based lead-free piezoelectric ceramics[J]. Adv Electron Mater, 2019, 5(12): 1900570.
[53] [53] HUAN Y, WANG X, FANG J, et al. Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics[J]. J Eur Ceram Soc, 2014, 34(5): 1445-1448.
[54] [54] LI J F, WANG K, ZHANG B P, et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering[J]. J Am Ceram Soc, 2006, 89(2): 706-709.
[55] [55] FU J, ZUO R, XU Z. High piezoelectric activity in (Na,K)NbO3 based lead-free piezoelectric ceramics: contribution of nanodomains[J]. Appl Phys Lett, 2011, 99(6): 062901.
[56] [56] HUAN Y, WANG X, SHEN Z, et al. Nanodomains in KNN-based lead-free piezoelectric ceramics: origin of strong piezoelectric properties[J]. J Am Ceram Soc, 2014, 97(3): 700-703.
[57] [57] RUBIO-MARCOS F, ROMERO J J, OCHOA D A, et al. Effects of poling process on KNN-modified piezoceramic properties[J]. J Am Ceram Soc, 2010, 93(2): 318-321.
[58] [58] MOROZOV M I, KUNGL H, HOFFMANN M J. Effects of poling over the orthorhombic-tetragonal phase transition temperature in compositionally homogeneous (K,Na)NbO3-based ceramics[J]. Appl Phys Lett, 2011, 98(13): 132908.
[59] [59] YAO F Z, WANG K, JO W, et al. Effect of Poling temperature on piezoelectricity of CaZrO3-modified (K, Na)NbO3-based lead-free ceramics[J]. J Appl Phys, 2014, 116(11): 114102.
[60] [60] LI Q, ZHANG M H, ZHU Z X, et al. Poling engineering of (K,Na)NbO3-based lead-free piezoceramics with orthorhombic-tetragonal[J]. J Mater Chem C, 2017, 5(3): 549-556.
[61] [61] WANG K, LI J F. Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity[J]. Adv Funct Mater, 2010, 20(12): 1924-1929.
[62] [62] YAO J, LI J, VIEHLAND D, et al. Aging associated domain evolution in the orthorhombic phase of textured (K0.5Na0.5)Nb0.97Sb0.03O3 ceramics[J]. Appl Phys Lett, 2012, 100(13): 132902.
[63] [63] ZHANG S, RU X, HUA H, et al. Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics[J]. Appl Phys Lett, 2008, 92(15): 152904.
[64] [64] HOLLENSTEIN E, DAMJANOVIC D, SETTER N. Temperature stability of the piezoelectric properties of Li-modified KNN ceramics[J]. J Eur Ceram Soc, 2007, 27(13): 4093-4097.
[65] [65] AKDOGAN E K, KERMAN K, ABAZARI M, et al. Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)-(Nb0.84Ta0.1Sb0.06)O3 ceramics[J]. Appl Phys Lett, 2008, 92(11): 112908.
[66] [66] WANG K, YAO F Z, JO W, et al. Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics[J]. Adv Funct Mater, 2013, 23(33): 4079-4086.
[67] [67] BALKE N, KUNGL H, GRANZOW T, et al. Bipolar fatigue caused by field screening in Pb(Zr,Ti)O3 ceramics[J]. J Am Ceram Soc, 2007, 90(12): 3869-3874.
[68] [68] GLAUM J, GRANZOW T, SCHMITT L A, et al. Temperature and field dependence of fatigue processes in PZT bulk ceramics[J]. Acta Mater, 2011, 59(15): 6083-6092.
[69] [69] EHMKE M, GLAUM J, JO W, et al. Stabilization of the fatigue-resistant phase by CuO addition in (Bi1/2Na1/2)TiO3-BaTiO3[J]. J Am Ceram Soc, 2011, 94(8): 2473-2478.
[70] [70] LUO Z, GLAUM J, GRANZOW J, et al. Bipolar and unipolar fatigue of ferroelectric BNT-based lead-free piezoceramics[J]. J Am Ceram Soc, 2011, 94(2): 529-535.
[71] [71] PATTERSON E A, CANN D P. Bipolar piezoelectric fatigue of Bi(Zn0.5Ti0.5)O3-(Bi0.5K0.5)TiO3-(Bi0.5Na0.5)TiO3 Pb-free ceramics[J]. Appl Phys Lett, 2012, 101(4): 042905.
[72] [72] YAO F Z, PATTERSON EA, WANG K, et al. Enhanced bipolar fatigue resistance in CaZrO3-modified (K,Na)NbO3 lead-free piezoceramics[J]. Appl Phys Lett, 2014, 104(24): 242912.
[73] [73] LI Y, LIU Y, CHSNER P E, ISAIA D, et al. Temperature dependent fracture toughness of KNN-based lead-free piezoelectric ceramics[J]. Acta Mater, 2019, 174: 369-378.
[74] [74] SHEN Z Y, LI J F, WANG K, et al. Electrical and mechanical properties of fine-grained Li/Ta-modified (Na,K)NbO3-based piezoceramics prepared by spark plasma sintering[J]. J Am Ceram Soc, 2010, 93(5): 1378-1383.
[75] [75] ZHOU J J, LI J F, ZHANG X W. BiFeO3-modified (Li,K,Na)(Nb,Ta)O3 lead-free piezoelectric ceramics with temperature-stable piezoelectric property and enhanced mechanical strength[J]. J Mater Sci, 2011, 47(4): 1767-1773.
[76] [76] WANG Y, DAMJANOVIC D, KLEIN N, et al. Compositional inhomogeneity in Li- and Ta-modified (K,Na)NbO3 ceramics[J]. J Am Ceram Soc, 2007, 90(11): 3485-3489.
[77] [77] THONG H C, ZHAO C, ZHU Z X, et al. The impact of chemical heterogeneity in lead-free (K,Na)NbO3 piezoelectric perovskite: ferroelectric phase coexistence[J]. Acta Mater, 2019, 166: 551-559.
[78] [78] THONG H C, PAYNE A, LI J W, et al. The origin of chemical inhomogeneity in lead-free potassium sodium niobate ceramic: competitive chemical reaction during solid-state synthesis[J]. Acta Mater., 2021, 211: 116833.
[79] [79] THONG H C, ZHAO C, ZHOU Z, et al. Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics[J]. Mater Today., 2019, 29: 37-48.
[80] [80] HONG C H, KIM H P, CHOI B Y, et al. Lead-free piezoceramics-where to move on?[J]. J. Materiomics, 2016, 2(1): 1-24.
[81] [81] KAWADA S, KIMURA, HIGUCHI Y, et al. (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes[J]. Appl Phys Express, 2009, 2(11): 111401.
[82] [82] HONG C H, HAN H S, LEE J S, et al. Ring-type rotary ultrasonic motor using lead-free ceramics[J]. J. Sensor Sci. & Tech., 2015, 24(4): 228-231.
[83] [83] JIANG L, YANG Y, CHEN R, et al. Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application[J]. Adv Funct Mater, 2019, 29(33): 1902522.
[84] [84] JIA C L, MI S B, URBAN K, et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films[J]. Nat Mater, 2008, 7(1): 57-61.
[85] [85] GAO X, CHENG Z, CHEN Z, et al. The mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO3 ceramics[J]. Nat Commun, 2021, 12(1): 881.
[86] [86] ZHAO C, GAO S, YANG T, et al. Precipitation hardening in ferroelectric ceramics[J]. Adv Mater, 2021, 33(36): 2102421.
[87] [87] LI, Z, THONG, H C, ZHANG, Y F, et al. Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency[J]. Adv Funct Mater, 2020, 31(1): 2005012.
Get Citation
Copy Citation Text
YAO Fangzhou, WU Chaofeng, LI Jingfeng, GONG Wen, WANG Ke. Recent Development on (K,Na)NbO3-based Lead-free Piezoceramics[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 587
Special Issue:
Received: Aug. 30, 2021
Accepted: --
Published Online: Nov. 11, 2022
The Author Email: Fangzhou YAO (yaofangzhou@tsinghua-zj.edu.cn)