Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 833(2023)

Optically-Modulated All-Dielectric Terahertz Fano Metamaterials with High Efficiency

YU Kaixin*... ZHAO Shiqiang, WANG Chen, SUN Jingbo, WEN Yongzheng and ZHOU Ji |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(38)

    [1] [1] DANG S, AMIN O, SHIHADA B, et al. What should 6G be?[J]. Nat Electron, 2020, 3(1): 20-29.

    [2] [2] TONOUCHI M. Cutting-edge terahertz technology[J]. Nat Photonics, 2007, 1(2): 97-105.

    [3] [3] NAGATSUMA T, DUCOURNAU G, RENAUD C C. Advances in terahertz communications accelerated by photonics[J]. Nat Photonics, 2016, 10(6): 371-379.

    [4] [4] AGHASI H, NAGHAVI S M H, TAVAKOLI TABA M, et al. Terahertz electronics: Application of wave propagation and nonlinear processes[J]. Appl Phys Rev, 2020, 7(2): 021302.

    [6] [6] JIN M, YANG W H, WANG X H, et al. Growth and characterization of ZnTe single crystal via a novel Te flux vertical Bridgman method[J]. Rare Met, 2021, 40(4): 858-864.

    [7] [7] SHALAEV V M. Optical negative-index metamaterials[J]. Nat Photonics, 2007, 1(1): 41-48.

    [8] [8] GRBIC A, ELEFTHERIADES G V. Overcoming the diffraction limit with a planar left-handed transmission-line lens[J]. Phys Rev Lett, 2004, 92(11): 117403.

    [9] [9] YU N, CAPASSO F. Flat optics with designer metasurfaces[J]. Nat Mater, 2014, 13(2): 139-150.

    [10] [10] JIANG H L, PAN J, ZHOU W, et al. Fabrication and application of arrays related to two-dimensional materials[J]. Rare Met, 2022, 41(1): 262-286.

    [12] [12] WANG Q, ZHANG X, XU Y, et al. A broadband metasurface-based terahertz flat-lens array[J]. Adv Opt Mater, 2015, 3(6): 779-785.

    [13] [13] YUE F, WEN D, ZHANG C, et al. Multichannel polarization- controllable superpositions of orbital angular momentum states[J]. Adv Mater, 2017, 29(15): 1603838.

    [14] [14] WEN Y, ZHOU J. Artificial nonlinearity generated from electromagnetic coupling metamolecule[J]. Phys Rev Lett, 2017, 118(16): 167401.

    [15] [15] SHADRIVOV I V, KAPITANOVA P V, MASLOVSKI S I, et al. Metamaterials controlled with light[J]. Phys Rev Lett, 2012, 109(8): 083902.

    [16] [16] ZHANG X G, TANG W X, JIANG W X, et al. Light-controllable digital coding metasurfaces[J]. Adv Sci, 2018, 5(11): 1801028.

    [17] [17] CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light Sci Appl, 2014, 3(10): e218-e218.

    [18] [18] RATNI B, DE LUSTRAC A, PIAU G P, et al. Active metasurface for reconfigurable reflectors[J]. Appl Phys A, 2018, 124(2): 104.

    [19] [19] SINGH R, AZAD A K, JIA Q X, et al. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates[J]. Opt Lett, 2011, 36(7): 1230-1232.

    [20] [20] MAO M, LIANG Y, LIANG R, et al. Dynamically temperature-voltage controlled multifunctional device based on VO2 and graphene hybrid metamaterials: Perfect absorber and highly efficient polarization converter[J]. Nanomaterials, 2019, 9(8): 1101.

    [21] [21] FU Y H, LIU A Q, ZHU W M, et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Adv Funct Mater, 2011, 21(18): 3589-3594.

    [22] [22] BAI L, SONG G Y, JIANG W X, et al. Acoustic tunable metamaterials based on anisotropic unit cells[J]. Appl Phys Lett, 2019, 115(23): 231902.

    [23] [23] BASUDEB S, CEDRIK M, THOMAS Z. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: A review[J]. Adv Photonics, 2019, 1(2): 1-14.

    [24] [24] RYBIN M V, KOSHELEV K L, SADRIEVA Z F, et al. High-$Q$ supercavity modes in subwavelength dielectric resonators[J]. Phys Rev Lett, 2017, 119(24): 243901.

    [25] [25] ZHANG M, ZHANG F, LI M, et al. Highly efficient amplitude modulation of terahertz fano resonance based on Si photoactive substrate by low power continuous wave[J]. Adv Mater Technol, 2020, 5(12): 2000626.

    [26] [26] YANG Y, WANG W, BOULESBAA A, et al. Nonlinear fano-resonant dielectric metasurfaces[J]. Nano Lett, 2015, 15(11): 7388-7393.

    [27] [27] MIROSHNICHENKO A E, FLACH S, KIVSHAR Y S. Fano resonances in nanoscale structures[J]. Rev Mod Phys, 2010, 82(3): 2257-2298.

    [28] [28] WANG Y, ZHOU C, HUO Y, et al. Efficient excitation and tuning of multi-fano resonances with high Q-factor in all-dielectric metasurfaces[J]. Nanomaterials, 2022, 12(13): 2292.

    [29] [29] GU J, SINGH R, LIU X, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat Commun, 2012, 3(1): 1151.

    [30] [30] MANJAPPA M, SRIVASTAVA Y K, CONG L, et al. Active photoswitching of sharp fano resonances in THz metadevices[J]. Adv Mater, 2017, 29(3): 1603355.

    [31] [31] LOU J, XU X, HUANG Y, et al. Optically controlled ultrafast terahertz metadevices with ultralow pump threshold[J]. Small, 2021, 17(44): 2104275.

    [32] [32] LIM W X, MANJAPPA M, SRIVASTAVA Y K, et al. Ultrafast all-optical switching of germanium-based flexible metaphotonic devices[J]. Adv Mater, 2018, 30(9): 1705331.

    [33] [33] JIANG J, FANG R, HAN J, et al. Optical switching of terahertz wave based on asymmetric metamaterial structures[J]. Ferroelectrics, 2020, 568(1): 79-84.

    [34] [34] LI Q, GUPTA M, ZHANG X, et al. Active control of asymmetric fano resonances with graphene-silicon-integrated terahertz metamaterials[J]. Adv Mater Technol, 2020, 5(2): 1900840.

    [35] [35] SUN L J, SU H W, LIU Q Q, et al. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes[J]. Rare Met, 2022, 41(7): 2387-2404.

    [36] [36] JEONG J, GOLDFLAM M D, CAMPIONE S, et al. High quality factor toroidal resonances in dielectric metasurfaces[J]. ACS Photonics, 2020, 7(7): 1699-1707.

    [37] [37] NAFTALY M, MILES R E. Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties[J]. J Appl Phys, 2007, 102(4): 043517.

    [38] [38] WANG W, SRIVASTAVA Y K, GUPTA M, et al. Photoswitchable anapole metasurfaces[J]. Adv Opt Mater, 2022, 10(4): 2102284.

    [39] [39] LINDEN S, ENKRICH C, WEGENER M, et al. Magnetic response of metamaterials at 100 Terahertz[J]. Science, 2004, 306(5700): 1351-1353.

    [41] [41] SCHINKE C, CHRISTIAN PEEST P, SCHMIDT J, et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon[J]. AIP Adv, 2015, 5(6): 067168

    Tools

    Get Citation

    Copy Citation Text

    YU Kaixin, ZHAO Shiqiang, WANG Chen, SUN Jingbo, WEN Yongzheng, ZHOU Ji. Optically-Modulated All-Dielectric Terahertz Fano Metamaterials with High Efficiency[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 833

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Oct. 18, 2022

    Accepted: --

    Published Online: Apr. 15, 2023

    The Author Email: Kaixin YU (yukx20@mails.tsinghua.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics