Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 983(2022)
Preparation and Luminescent Properties of ZnS:Mn Nanocrystals Embedded Glass
[1] [1] LITA A, WASHINGTON II A L, STROUSE G F, et al. Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites[J]. Adv Mater, 2010, 22(36): 3987-91.
[3] [3] SAIKIA K, DEB P, KALITA E. Facile synthesis of highly luminescent ZnSe(S) alloyed quantum dot for biomedical imaging[J]. Curr Appl Phys, 2013, 13(5): 925-930.
[4] [4] SOHEYLI E, SAHRAEI R, NAZARI F, et al. Luminescent, low-toxic and stable gradient-alloyed Fe:ZnSe(S)@ZnSe(S) core:shell quantum dots as a sensitive fluorescent sensor for lead ions[J]. Nanotechnology, 2018, 29(44): 445602.
[5] [5] ZHOU R H, SUN S K, LI C H, et al. Enriching Mn-doped ZnSe quantum dots onto mesoporous silica nanoparticles for enhanced fluorescence/magnetic resonance imaging dual-modal bio-imaging[J]. ACS Appl Mater Interfaces, 2018, 10(40): 34060-34067.
[6] [6] KARAN NI S, SARMA D D, KADAM R M, et al. Doping transition metal (Mn or Cu) ions in semiconductor nanocrystals[J]. J Phys Chem Lett, 2010, 1(19): 2863-2866.
[7] [7] YANG Y A, CHEN O, ANGERHOFER A, et al. Radial position controlled doping in CdS ZnS core shell nanocrystals[J]. J Am Chem Soc, 2006, 128: 12428-12429.
[8] [8] ZHANG J T, DI Q M, LIU J, et al. Heterovalent doping in colloidal semiconductor nanocrystals: Cation-exchange-enabled new accesses to tuning dopant luminescence and electronic impurities[J]. J Phys Chem Lett, 2017, 8(19): 4943-4953.
[9] [9] LIU J, ZHAO Q, LIU Jialong, et al. Heterovalent-doping-enabled efficient dopant luminescence and controllable electronic impurity via a new strategy of preparing II-VI nanocrystals[J]. Adv Mater, 2015, 27(17): 2753-61.
[10] [10] ZENG R S, ZHANG T T, Z D G, et al. Highly Emissive, Color-tunable, phosphine-free Mn:ZnSe/ZnS core/shell and Mn:ZnSeS shell-alloyed doped nanocrystals[J]. J Phys Chem C, 2011, 115(7): 3005-3010.
[11] [11] PRADHAN N, D S D. Advances in light-emitting doped semiconductor nanocrystals[J]. J Phys Chem Lett, 2011, 2(21): 2818-2826.
[12] [12] SILVER J, MARSH P J, FERN G R, et al. ZnCdS:Cu, Al, Cl: A near infra-red emissive family of phosphors for marking, coding, and identification[J]. ECS J Solid State Sci Technol, 2018, 7(1): R3057-R63.
[13] [13] DALPIAN G M, CHELIKOWSKY J R. Self-purification in semiconductor nanocrystals[J]. Phys Rev Lett, 2006, 96(22): 226802.
[14] [14] ERWIN S C, ZU L, HAFTEL M I, et al. Doping semiconductor nanocrystals [J]. Nature, 2005, 436(7047): 91-94.
[15] [15] ZENG R S, MICHAEL R, XIE R G, et al. Synthesis of highly emissive mn-doped ZnSe nanocrystals without pyrophoric reagents[J]. Chem Mater, 2010, 22(6): 2107-2113.
[16] [16] KHON E, LAMBRIGHT S, KHON D, et al. Inorganic solids of CdSe nanocrystals exhibiting high emission quantum yield[J]. Adv Funct Mater, 2012, 22(17): 3714-3722.
[17] [17] NGUYEN THANH-DINH, HAMAD W Y, J. M M. CdS quantum dots encapsulated in chiral nematic mesoporous silica: new iridescent and luminescent materials[J]. Adv Funct Mater, 2014, 24(6): 777-783.
[18] [18] XU K, CHUNG W J, J. H. CdS Quantum dots in glass: “Modification of photoluminescence by silver doping”[J]. INT J APPL GLASS SCI, 2011, 2(3): 157-161.
[19] [19] PANMAND R P, TEKALE S P, DAWARE K D, et al. Characterisation of spectroscopic and magneto-optical faraday rotation in Mn2+- doped CdS quantum dots in a silicate glass[J]. J Alloys Compd, 2020, 817: 152696.
[20] [20] LIU J Y, LIU C X, ZHENG Y G, et al. Three types of site of Mn2+ in ZnS:Mn2+ nanocrystal/Pyrex glass composites[J]. J Phys Condens Matter, 1999, 11: 5377-5384.
[21] [21] LI K, LIU C, ZHAO Z Y, et al. Optical properties of Cu ions-doped ZnSe quantum dots in silicate glasses[J]. J Am Ceram Soc, 2018, 101(11): 5080-5088.
[22] [22] LOURENCO S A, DANTAS N O, SILVA R S. Growth kinetic on the optical properties of the Pb(1-x)Mn(x)Se nanocrystals embedded in a glass matrix: thermal annealing and Mn2+ concentration[J]. Phys Chem Chem Phys, 2012, 14(31): 11040-11047.
[24] [24] LIU C X, LIU J Y, DOU K. EPR study of ZnS: Mn2+ nanocrystals in Pyrex glasses[J]. J Nanosci Nanotechnol, 2005, 5(9): 1552-1556.
[25] [25] CHEN D, WAN Z, ZHOU Y, et al. Tuning into blue and red: europium single-doped nano-glass-ceramics for potential application in photosynthesis[J]. J Mater Chem C, 2015, 3(13): 3141-3149.
[26] [26] LI K, YE Y, ZHANG W C, et al. Modulation of the optical properties of ZnS QD-embedded glass through aluminum and manganese doping[J]. J Mater Chem C, 2021, 9(34): 11261-11271.
[27] [27] XIA M L, LIU C, ZHAO Z Y, et al. Formation and optical properties of ZnSe and ZnS nanocrystals in glasses[J]. J Non Cryst Solids, 2015, 429: 79-82.
[28] [28] LIU X Y, GUO H, LIU Y, et al. Thermal quenching and energy transfer in novel Bi3+/Mn2+co-doped white-emitting borosilicate glasses for UV LEDs[J]. J Mater Chem C, 2016, 4(13): 2506-2512.
[29] [29] LIU X F, ZHOU J J, ZHOU S F, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Prog Mater Sci, 2018, 97: 38-96.
[30] [30] PRADHAN N, PENG X. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry[J]. J Am Chem Soc, 2007, 129(11): 3339-3347.
[31] [31] DENG Z, TONG L, FLORES M, et al. High-quality manganese-doped zinc sulfide quantum rods with tunable dual-color and multiphoton emissions[J]. J Am Chem Soc, 2011, 133(14): 5389-5396.
[32] [32] YANG X, PU C, QIN H, et al. Temperature- and Mn2+ concentration-dependent emission properties of Mn2+-doped ZnSe nanocrystals[J]. J Am Chem Soc, 2019, 141(6): 2288-2298.
Get Citation
Copy Citation Text
WANG Jiancheng, ZHOU Beiying, YANG Peng, ZHAO Yuye, WANG Lianjun, JIANG Wan. Preparation and Luminescent Properties of ZnS:Mn Nanocrystals Embedded Glass[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 983
Category:
Received: Dec. 27, 2021
Accepted: --
Published Online: Nov. 13, 2022
The Author Email: Jiancheng WANG (13262690238@163.com)