Acta Optica Sinica, Volume. 42, Issue 17, 1701002(2022)

Spaceborne Aerosol Passive Optical Remote Sensing Instruments:

Ning Ding1,2, Bo Yu1,2, Changxiang Yan1,3、*, Wenjie Li1,2, and Xueping Ju1
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, Jilin, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Center of Materials Science and Optoelectrics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(99)

    [1] Kokhanovsky A A, de Leeuw G[M]. Satellite aerosol remote sensing over land(2009).

    [2] Lenoble J, Remer L, Tanré D[M]. Aerosol remote sensing(2013).

    [3] Bohren C F, Huffman D R[M]. Absorption and scattering of light by small particles(1998).

    [4] McCormick M P, Thomason L W, Trepte C R. Atmospheric effects of the Mt Pinatubo eruption[J]. Nature, 373, 399-404(1995).

    [5] Hasekamp O P, Landgraf J. Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements[J]. Applied Optics, 46, 3332-3344(2007).

    [6] Li Z Q, Xie Y S, Zhang Y et al. Advance in the remote sensing of atmospheric aerosol composition[J]. Journal of Remote Sensing, 23, 359-373(2019).

    [7] Wu L H. Aerosol retrieval from multiangle multispectral photopolarimetric measurements[D](2015).

    [8] Mo Z S, Bu L B, Wang Q et al. Estimation of particulate matter mass concentration based on generalized regression neural network model combining aerosol extinction coefficientand meteorological elements[J]. Chinese Journal of Lasers, 49, 1710001(2022).

    [9] Mishchenko M I, Geogdzhayev I V, Cairns B et al. Past, present, and future of global aerosol climatologies derived from satellite observations: a perspective[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 325-347(2007).

    [10] Higurashi A, Nakajima T. Development of a two-channel aerosol retrieval algorithm on a global scale using NOAA AVHRR[J]. Journal of the Atmospheric Sciences, 56, 924-941(1999).

    [11] Griggs M. Satellite measurements of tropospheric aerosols[J]. Advances in Space Research, 2, 109-118(1982).

    [12] Ignatov A, Stowe L. Aerosol retrievals from individual AVHRR channels. Part I: retrieval algorithm and transition from Dave to 6S radiative transfer model[J]. Journal of the Atmospheric Sciences, 59, 313-334(2002).

    [13] Ignatov A, Stowe L. Aerosol retrievals from individual AVHRR channels. Part II: quality control, probability distribution functions, information content, and consistency checks of retrievals[J]. Journal of the Atmospheric Sciences, 59, 335-362(2002).

    [14] Nagaraja Rao C R, Stowe L L, McClain E P. Remote sensing of aerosols over the oceans using AVHRR data theory, practice and applications[J]. International Journal of Remote Sensing, 10, 743-749(1989).

    [15] Stowe L L, Ignatov A M, Singh R R. Development, validation, and potential enhancements to the second-generation operational aerosol product at the national environmental satellite, data, and information service of the national oceanic and atmospheric administration[J]. Journal of Geophysical Research: Atmospheres, 102, 16923-16934(1997).

    [16] Ignatov A, Sapper J, Cox S et al. Operational aerosol observations (AEROBS) from AVHRR/3 on board NOAA-KLM satellites[J]. Journal of Atmospheric and Oceanic Technology, 21, 3-26(2004).

    [17] Mishchenko M I, Geogdzhayev I V, Cairns B et al. Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results[J]. Applied Optics, 38, 7325-7341(1999).

    [18] Hauser A, Oesch D, Foppa N. Aerosol optical depth over land: comparing AERONET, AVHRR and MODIS[J]. Geophysical Research Letters, 32, L17816(2005).

    [19] Hauser A, Oesch D, Foppa N et al. NOAA AVHRR derived aerosol optical depth over land[J]. Journal of Geophysical Research: Atmospheres, 110, D08204(2005).

    [20] Riffler M, Popp C, Hauser A et al. Validation of a modified AVHRR aerosol optical depth retrieval algorithm over Central Europe[J]. Atmospheric Measurement Techniques, 3, 1255-1270(2010).

    [21] Li Y J. Satellite remote sensing inversion of atmospheric aerosol over land based on time series technology[D](2012).

    [22] He X W. Inversion of land aerosol parameters based on AVHRR data[D](2016).

    [23] Smith G S. The polarization of skylight: an example from nature[J]. American Journal of Physics, 75, 25-35(2007).

    [24] Kaufman Y J, Wald A E, Remer L A et al. The MODIS 2.1‑μm channel: correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Transactions on Geoscience and Remote Sensing, 35, 1286-1298(1997).

    [25] Kaufman Y J, Tanré D, Remer L A et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J]. Journal of Geophysical Research: Atmospheres, 102, 17051-17067(1997).

    [26] Kaufman Y, Tanré D, Remer L et al. Remote sensing of tropospheric aerosol from EOS-MODIS over the land using dark targets and dynamic aerosol models[J]. Journal of Geophysical Research: Atmospheres, 102, 17051-17067(1997).

    [27] Levy R C, Remer L A, Mattoo S et al. Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance[J]. Journal of Geophysical Research: Atmospheres, 112, D13211(2007).

    [29] Hsu N C, Tsay S C, King M D et al. Aerosol properties over bright-reflecting source regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 42, 557-569(2004).

    [31] Hsu N C, Tsay S C, King M D et al. Deep blue retrievals of Asian aerosol properties during ACE-Asia[J]. IEEE Transactions on Geoscience and Remote Sensing, 44, 3180-3195(2006).

    [32] Zhong G S, Wang X F, Guo M et al. A dark target algorithm for the GOSAT TANSO-CAI sensor in aerosol optical depth retrieval over land[J]. Remote Sensing, 9, 524(2017).

    [33] Wang F, Wang X Q, Ding Y. Retrieval of aerosol optical depth over Taiwan island using visible channels of Sentinel-3A OLCI[J]. Journal of Geo-Information Science, 22, 2038-2050(2020).

    [34] Mao Q J, Jin S S. Investigation of spatial and temporal distribution characteristics of global aerosol optical depth from 2009 to 2018[J]. Laser & Optoelectronics Progress, 58, 0301001(2021).

    [38] Lee S, Kim M, Choi M et al. Aerosol property retrieval algorithm over Northeast Asia from TANSO-CAI measurements onboard GOSAT[J]. Remote Sensing, 9, 687(2017).

    [39] Sano I, Tanabe M, Kamei T et al. Carbonaceous aerosols over Siberia and Indonesia with GOSAT/CAI[J]. Proceedings of SPIE, 7859, 785906(2010).

    [40] Zhong G S, Wang X F, Tani H et al. A modified aerosol free vegetation index algorithm for aerosol optical depth retrieval using GOSAT TANSO-CAI data[J]. Remote Sensing, 8, 998(2016).

    [41] Peralta R J, Nardell C, Cairns B et al. Aerosol polarimetry sensor for the Glory Mission[J]. Proceedings of SPIE, 6786, 67865L(2007).

    [42] Tsekeri A, Gross B, Moshary F et al. The development and assessment of a flexible inversion algorithm for aerosol property retrieval combining passive multiangle multispectral intensity and polarization measurements[J]. Proceedings of SPIE, 7461, 74610W(2009).

    [43] Middleton E M, Deering D W, Ahmad S P. Surface anisotropy and hemispheric reflectance for a semiarid ecosystem[J]. Remote Sensing of Environment, 23, 193-212(1987).

    [44] Deering D W, Eck T F, Otterman J. Bidirectional reflectances of selected desert surfaces and their three-parameter soil characterization[J]. Agricultural and Forest Meteorology, 52, 71-93(1990).

    [45] Si Y D, Lu Q F, Zhang X Y et al. A review of advances in the retrieval of aerosol properties by remote sensing multi-angle technology[J]. Atmospheric Environment, 244, 117928(2021).

    [46] Llewellyn-Jones D, Remedios J. The Advanced Along Track Scanning Radiometer (AATSR) and its predecessors ATSR-1 and ATSR-2: an introduction to the special issue[J]. Remote Sensing of Environment, 116, 1-3(2012).

    [47] Sogacheva L, de Leeuw G, Kolmonen P et al. Aerosol and cloud properties using (A)ATSR: retrieval algorithm and application for aerosol-cloud interaction[C](2014).

    [48] Kokhanovsky A A, Curier R L, De Leeuw G et al. The inter-comparison of AATSR dual-view aerosol optical thickness retrievals with results from various algorithms and instruments[J]. International Journal of Remote Sensing, 30, 4525-4537(2009).

    [49] Donlon C, Berruti B, Buongiorno A et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission[J]. Remote Sensing of Environment, 120, 37-57(2012).

    [50] Veefkind J P, de Leeuw G. A new algorithm to determine the spectral aerosol optical depth from satellite radiometer measurements[J]. Journal of Aerosol Science, 29, 1237-1248(1998).

    [51] Wu K Y, Hou W Z, Shi Z et al. Research progress of aerosol remote sensing retrieval algorithm based on satellite multi-angle observation[J]. Journal of Atmospheric and Environmental Optics, 16, 283-298(2021).

    [52] Kolmonen P, Sogacheva L, Virtanen T H et al. The ADV/ASV AATSR aerosol retrieval algorithm: current status and presentation of a full-mission AOD dataset[J]. International Journal of Digital Earth, 9, 545-561(2016).

    [53] Grey W M F, North P R J, Los S O. Computationally efficient method for retrieving aerosol optical depth from ATSR-2 and AATSR data[J]. Applied Optics, 45, 2786-2795(2006).

    [54] Thomas G E, Carboni E, Sayer A M et al. Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from satellite radiometers[M]. Kokhanivsky A A, Leeuw G. Satellite aerosol remote sensing over land. Springer praxis books, 193-225(2009).

    [55] Jovanovic V M. Global earth mapping with NASA's multiangle imaging spectroradiometer (MISR)[J]. Proceedings of SPIE, 4885, 22-33(2003).

    [56] Feng X M. Quantitative remote sensing studies on eco-environment in Inner Mongolia with multi-angle MISR data[D](2006).

    [57] Diner D J, Martonchik J V, Kahn R A et al. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land[J]. Remote Sensing of Environment, 94, 155-171(2005).

    [58] Martonchik J V, Diner D J, Crean K A et al. Regional aerosol retrieval results from MISR[J]. IEEE Transactions on Geoscience and Remote Sensing, 40, 1520-1531(2002).

    [59] Kahn R A, Gaitley B J, Garay M J et al. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network[J]. Journal of Geophysical Research: Atmospheres, 115, D23209(2010).

    [60] Gao J N, Li L P, Cui T W et al. Retrieval of fine mode aerosol optical depth based on satellite polarization remote sensing[J]. Laser & Optoelectronics Progress, 57, 030101(2020).

    [61] Cui Y, Zhang X G, Zhou X C et al. Effect of aerosol on polarization distribution of sky light[J]. Acta Optica Sinica, 39, 0601001(2019).

    [62] Li Z Q, Goloub P, Dubovik O et al. Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 1954-1961(2009).

    [63] Wang J, Xu X G, Ding S G et al. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 510-528(2014).

    [64] Mishchenko M I, Cairns B, Kopp G et al. Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory mission[J]. Bulletin of the American Meteorological Society, 88, 677-692(2007).

    [65] Hansen J E, Travis L D. Light scattering in planetary atmospheres[J]. Space Science Reviews, 16, 527-610(1974).

    [66] Zhao Y M, Jiang Y S, Lu X M. Theory analysis of polarization characteristic of the light scattered by the aerosol[J]. Infrared and Laser Engineering, 36, 862-865(2007).

    [67] Duan M Z, Min Q L, Lü D. A polarized radiative transfer model based on successive order of scattering[J]. Advances in Atmospheric Sciences, 27, 891-900(2010).

    [68] Zhang Y, Liu Z H, Zhang J et al. Retrieval of the fine-mode aerosol optical depth over East China using a grouped residual error sorting (GRES) method from multi-angle and polarized satellite data[J]. Remote Sensing, 10, 1838(2018).

    [69] Wang H, Sun X B, Yang L K et al. Aerosol retrieval algorithm based on adaptive land-atmospheric decoupling for polarized remote sensing over land surfaces[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 219, 74-84(2018).

    [70] Deuzé J L, Bréon F M, Devaux C et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. Journal of Geophysical Research: Atmospheres, 106, 4913-4926(2001).

    [71] Dubovik O, Herman M, Holdak A et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations[J]. Atmospheric Measurement Techniques, 4, 975-1018(2011).

    [73] Zheng F X, Li Z Q, Hou W Z et al. Aerosol retrieval study from multiangle polarimetric satellite data based on optimal estimation method[J]. Journal of Applied Remote Sensing, 14, 014516(2020).

    [74] Chen C, Dubovik O, Lapyonok T. Retrieval desert dust and carbonaceous aerosol emissions over Africa from PARASOL/GRASP observations[C], A42D-06(2016).

    [75] Ge B Y, Mei X D, Li Z Q et al. An improved algorithm for retrieving high resolution fine-mode aerosol based on polarized satellite data: application and validation for POLDER-3[J]. Remote Sensing of Environment, 247, 111894(2020).

    [76] Gao X, Hu X Q, Fang W et al. Application of the optimal grouped residual method in retrieving the optical depth of aerosol over land with POLDER multi-angular polarized data[J]. National Remote Sensing Bulletin, 26, 505-515(2022).

    [77] Hasekamp O P, Landgraf J. Retrieval of aerosol properties over the ocean from multispectral single-viewing-angle measurements of intensity and polarization: retrieval approach, information content, and sensitivity study[J]. Journal of Geophysical Research: Atmospheres, 110, D20207(2005).

    [78] Frouin R, Deschamps P Y, Rothschild R et al. MAUVE/SWIPE: an imaging instrument concept with multi-angular, -spectral, and-polarized capability for remote sensing of aerosols, ocean color, clouds, and vegetation from space[J]. Proceedings of SPIE, 6406, 64060E(2006).

    [79] Chen L F, Shang H Z, Fan M et al. Mission overview of the GF-5 satellite for atmospheric parameter monitoring[J]. National Remote Sensing Bulletin, 25, 1917-1931(2021).

    [80] Fan C, Fu G L, di Noia A et al. Use of a neural network-based ocean body radiative transfer model for aerosol retrievals from multi-angle polarimetric measurements[J]. Remote Sensing, 11, 2877(2019).

    [81] Ti R F, Huang H L, Liu X et al. Retrieval of aerosol optical depth over parts of China land based on directional polarimetric camera[J]. Journal of Atmospheric and Environmental Optics, 16, 239-246(2021).

    [82] Wang Y Q, He M Q, Zhang Y et al. Retrieval of fine-mode aerosol optical depth based on multi-angle polarization data of GF-5 satellite[J]. Remote Sensing Technology and Application, 37, 451-459(2022).

    [83] Li Z Q, Hou W Z, Hong J et al. Directional Polarimetric Camera (DPC): monitoring aerosol spectral optical properties over land from satellite observation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 218, 21-37(2018).

    [84] Zheng F X, Hou W Z, Li Z Q. Optimal estimation retrieval for directional polarimetric camera onboard Chinese Gaofen-5 satellite: an analysis on multi-angle dependence and a posteriori error[J]. Acta Physica Sinica, 68, 040701(2019).

    [85] Xie Y S, Li Z Q, Hou W Z et al. Retrieval of fine-mode aerosol optical depth based on remote sensing measurements of directional polarimetric camera onboard GF-5 satellite[J]. Aerospace Shanghai, 36, 219-226(2019).

    [86] Wu S C, Ma J J, Zhang Q Y et al. Research on haze and fog distinguishing algorithm based on particle polarization characteristics[J]. Journal of Atmospheric and Environmental Optics, 14, 221-227(2019).

    [87] Wang X, Guo Z, Huang Y P et al. A cloud detection scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT)[J]. Advances in Atmospheric Sciences, 34, 16-25(2017).

    [88] Chen X, Wang J, Liu Y et al. Angular dependence of aerosol information content in CAPI/TanSat observation over land: effect of polarization and synergy with A-train satellites[J]. Remote Sensing of Environment, 196, 163-177(2017).

    [89] Chen X, Yang D X, Cai Z N et al. Aerosol retrieval sensitivity and error analysis for the cloud and aerosol polarimetric imager on board TanSat: the effect of multi-angle measurement[J]. Remote Sensing, 9, 183(2017).

    [90] Ding N, Shao J B, Yan C X et al. Near-ultraviolet to near-infrared band thresholds cloud detection algorithm for TANSAT-CAPI[J]. Remote Sensing, 13, 1906(2021).

    [91] Mukai S, Sano I, Nakata M. Algorithms for the classification and characterization of aerosols: utility verification of near-UV satellite observations[J]. Journal of Applied Remote Sensing, 13, 014527(2019).

    [92] JAXA[M]. GCOM-C "SHIKISAI" data users handbook(2018).

    [93] Mukai S, Sano I, Nakata M. Efficient algorithms for aerosol retrieval from GCOM-C/SGLI[C], 7614-7617(2019).

    [94] Mukai S, Sano I, Nakata M. Improved algorithms for remote sensing-based aerosol retrieval during extreme biomass burning events[J]. Atmosphere, 12, 403(2021).

    [95] Yoshida M[M]. Algorithm theoretical basis document of aerosol by non-polarization for GCOM-C/SGLI version 1(2018).

    [96] Yoshida M[M]. Algorithm theoretical basis document of aerosol properties for GCOM-C/SGLI version 2(2020).

    [97] Yoshida M, Murakami H[M]. Algorithm theoretical basis document of aerosol properties for GCOM-C/SGLI(2021).

    [98] Fougnie B, Marbach T, Lacan A et al. The multi-viewing multi-channel multi-polarisation imager: overview of the 3MI polarimetric mission for aerosol and cloud characterization[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 219, 23-32(2018).

    Tools

    Get Citation

    Copy Citation Text

    Ning Ding, Bo Yu, Changxiang Yan, Wenjie Li, Xueping Ju. Spaceborne Aerosol Passive Optical Remote Sensing Instruments:[J]. Acta Optica Sinica, 2022, 42(17): 1701002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jul. 12, 2022

    Accepted: Aug. 13, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Yan Changxiang (yancx@ciomp.ac.cn)

    DOI:10.3788/AOS202242.1701002

    Topics